Homepage of the 2nd Institute of Physics, RWTH Aachen - News

Current events

Next talk on Tuesday in 3 days by David Emmerich .

News 23.04.2024
New publication: Negative electronic compressibility in charge islands in twisted bilayer graphene

Site Content:

02.12.2022

Christoph Stampfer has been appointed Program Chair of 6th Graphene Flagship Japan-EU Workshop

Christoph Stampfer has been appointed as one of the four program chairs for the 6th Graphene Flagship Japan-EU Workshop on graphene and related 2D materials, which will be held 25-26 May 2023 at Tokyo (Japan). The workshop will provide a forum to discuss the latest developments in graphene and 2D materials research. For more details see here.

read more

25.10.2022

New publication: Experimental Observation of ABCB Stacked Tetralayer Graphene

../../images/news/2022_ABCB.png

ACS Nano 10, 16617 (2022)
In tetralayer graphene, three inequivalent layer stackings should exist; however, only rhombohedral (ABCA) and Bernal (ABAB) stacking have so far been observed. The three stacking sequences differ in their electronic structure, with the elusive third stacking (ABCB) being unique as it is predicted to exhibit an intrinsic bandgap as well as locally flat bands around the K points. Here, we use scattering-type scanning near-field optical microscopy and confocal Raman microscopy to identify and characterize domains of ABCB stacked tetralayer graphene. We differentiate between the three stacking sequences by addressing characteristic interband contributions in the optical conductivity between 0.28 and 0.56 eV with amplitude and phase-resolved near-field nanospectroscopy. By normalizing adjacent flakes to each other, we achieve good agreement between theory and experiment, allowing for the unambiguous assignment of ABCB domains in tetralayer graphene. These results establish near-field spectroscopy at the interband transitions as a semiquantitative tool, enabling the recognition of ABCB domains in tetralayer graphene flakes and, therefore, providing a basis to study correlation physics of this exciting phase.

read more

24.10.2022

New publication: The Reststrahlen Effect in the Optically Thin Limit: A Framework for Resonant Response in Thin Media

../../images/news/2022_NL_MA.png

Nano Letters 22, 8389 (2022)
Sharp resonances can strongly modify the electromagnetic response of matter. A classic example is the Reststrahlen effect – high reflectivity in the mid-infrared in many polar crystals near their optical phonon resonances. Although this effect in bulk materials has been studied extensively, a systematic treatment for finite thickness remains challenging. Here we describe, experimentally and theoretically, the Reststrahlen response in hexagonal boron nitride across more than 5 orders of magnitude in thickness, down to a monolayer. We find that the high reflectivity plateau of the Reststrahlen band evolves into a single peak as the material enters the optically thin limit, within which two distinct regimes emerge: a strong-response regime dominated by coherent radiative decay and a weak-response regime dominated by damping. We show that this evolution can be explained by a simple two-dimensional sheet model that can be applied to a wide range of thin media.

read more

14.09.2022

Welcome to Mr. Saketh Ravuri and Ms. Priyanka Mondal

Mr. Saketh Ravuri and Ms. Priyanka Mondal have joined the 2D Materials and Quantum Devices Group at the 2nd Institute of Physics A for a seven-month research staying supported by a DAAD KOSPIE scholarship. Mr. Ravuri and Ms. Mondal are currently pursuing a Master in Physics at the Indian Institute of Technology in Madras and Kharagpur, India, respectively. In Aachen, they will work on their Master Thesis project, focusing on bilayer graphene quantum devices and on MoSe2-WSe2 in-plane heterostructures.

read more

22.08.2022

ML4Q&A Podcast with Annika Kurzmann

../../images/news/ml4q_podcast_annika_orig.PNG

Annika Kurzmann is guest in the recent episode of the ML4Q&A podcast. Listen and learn about the exciting research she is doing in her lab. For more infos visit https://ml4q.de/ml4qa/

read more

27.07.2022

New publication: Transport spectroscopy of ultraclean tunable band gaps in bilayer graphene

../../images/news/2022_AEM_Icking.png

Adv. Electron.Mater. 8, 2200510 (2022)
The importance of controlling both the charge carrier density and the band gap of a semiconductor cannot be overstated, as it opens the doors to a wide range of applications, including, for example, highly-tunable transistors, photodetectors, and lasers. Bernal-stacked bilayer graphene is a unique van-der-Waals material that allows tuning of the band gap by an out-of-plane electric field. Although the first evidence of the tunable gap is already found 10 years ago, it took until recent to fabricate sufficiently clean heterostructures where the electrically induced gap can be used to fully suppress transport or confine charge carriers. Here, a detailed study of the tunable band gap in gated bilayer graphene characterized by temperature-activated transport and finite-bias spectroscopy measurements is presented. The latter method allows comparing different gate materials and device technologies, which directly affects the disorder potential in bilayer graphene. It is shown that graphite-gated bilayer graphene exhibits extremely low disorder and as good as no subgap states resulting in ultraclean tunable band gaps up to 120 meV. The size of the band gaps are in good agreement with theory and allow complete current suppression making a wide range of semiconductor applications possible.

read more

18.07.2022

New publication: Charge-Induced Artifacts in Nonlocal Spin-Transport Measurements: How to Prevent Spurious Voltage Signals

../../images/news/2022_PRA.png

Phys. Rev. Appl. 18, 014028 (2022)
To conduct spin-sensitive transport measurements, a nonlocal device geometry is often used to avoid spurious voltages that are caused by the flow of charges. However, in the vast majority of reported nonlocal spin-valve, Hanle spin precession or spin Hall measurements, background signals have been observed that are not related to spins. We discuss seven different types of these charge-induced signals and explain how these artifacts can result in erroneous or misleading conclusions when falsely attributed to spin transport. The charge-driven signals can be divided into two groups: signals that are inherent to the device structure and/or the measurement setup and signals that depend on a common-mode voltage. We designed and built a voltage-controlled current source that significantly diminishes all spurious voltage signals of the latter group in both dc and ac measurements by creating a virtual ground within the nonlocal detection circuit. This is especially important for lock-in-based measurement techniques, where a common-mode voltage can create a phase-shifted, frequency-dependent signal with an amplitude several orders of magnitude larger than the actual spin signal. Measurements performed on graphene-based nonlocal spin-valve devices demonstrate how all spurious voltage signals that are caused by a common-mode voltage can be completely suppressed by such a current source.

read more

17.07.2022

New publication: Raman imaging of twist angle variations in twisted bilayer graphene at intermediate angles

../../images/news/2022_2DMat_Schaepers.png

2D Materials 9, 045009 (2022)
Van der Waals layered materials with well-defined twist angles between the crystal lattices of individual layers have attracted increasing attention due to the emergence of unexpected material properties. As many properties critically depend on the exact twist angle and its spatial homogeneity, there is a need for a fast and non-invasive characterization technique of the local twist angle, to be applied preferably right after stacking. We demonstrate that confocal Raman spectroscopy can be utilized to spatially map the twist angle in stacked bilayer graphene for angles between 6.5° and 8° when using a green excitation laser. The twist angles can directly be extracted from the moiré superlattice-activated Raman scattering process of the transverse acoustic (TA) phonon mode. Furthermore, we show that the width of the TA Raman peak contains valuable information on spatial twist angle variations on length scales below the laser spot size of ∼500 nm.

read more

Showing 33 - 40 (157 total) - Previous Next