Homepage of the 2nd Institute of Physics, RWTH Aachen - News

Current events

Next talk on Friday in 2 days by Zachary Winter.

News 03.05.2022
New publication: Visualisierung von Messdaten eigener Sensormodule mit phyphox (in German)

Site Content:


New publication: How to solve problems in micro- and nanofabrication caused by the emission of electrons and charged metal atoms during e-beam evaporation


J. Phys. D: Appl. Phys. 54, 225304 (2021)
We discuss how the emission of electrons and ions during electron-beam-induced physical vapor deposition can cause problems in micro- and nanofabrication processes. After giving a short overview of different types of radiation emitted from an electron-beam (e-beam) evaporator and how the amount of radiation depends on different deposition parameters and conditions, we highlight two phenomena in more detail: First, we discuss an unintentional shadow evaporation beneath the undercut of a resist layer caused by the one part of the metal vapor which got ionized by electron-impact ionization. These ions first lead to an unintentional build-up of charges on the sample, which in turn results in an electrostatic deflection of subsequently incoming ionized metal atoms toward the undercut of the resist. Second, we show how low-energy secondary electrons during the metallization process can cause cross-linking, blisters, and bubbles in the respective resist layer used for defining micro- and nanostructures in an e-beam lithography process. After the metal deposition, the cross-linked resist may lead to significant problems in the lift-off process and causes leftover residues on the device. We provide a troubleshooting guide on how to minimize these effects, which e.g. includes the correct alignment of the e-beam, the avoidance of contaminations in the crucible and, most importantly, the installation of deflector electrodes within the evaporation chamber.

read more


New publication: Tunable interdot coupling in few-electron bilayer graphene double quantum dots


Appl. Phys. Lett. 118, 103101 (2021)
We present a highly controllable double quantum dot device based on bilayer graphene. Using a device architecture of interdigitated gate fingers, we can control the interdot tunnel coupling between 1 and 4 GHz and the mutual capacitive coupling between 0.2 and 0.6 meV, independent of the charge occupation of the quantum dots. The charging energy and, hence, the dot size remain nearly unchanged. The tuning range of the tunnel coupling covers the operating regime of typical silicon and GaAs spin qubit devices.

read more


New publication: Dispersive sensing of charge states in a bilayer graphene quantum dot


Appl. Phys. Lett. 118, 093104 (2021)
We demonstrate dispersive readout of individual charge states in a gate-defined few-electron quantum dot in bilayer graphene. We employ a radio frequency reflectometry circuit, where an LC resonator with a resonance frequency close to 280 MHz is directly coupled to an Ohmic contact of the quantum dot device. The detection scheme based on changes in the quantum capacitance operates over a wide gate-voltage range and allows us to probe excited states down to the single-electron regime. Crucially, the presented sensing technique avoids the use of an additional, capacitively coupled quantum device such as a quantum point contact or single electron transistor, making dispersive sensing particularly interesting for gate-defined graphene quantum dots.

read more


New publication: Pulsed-gate spectroscopy of single-electron spin states in bilayer graphene quantum dots


Phys. Rev. B 103, L081404 (2021)
Graphene and bilayer graphene quantum dots are promising hosts for spin qubits with long coherence times. Although recent technological improvements make it possible to confine single electrons electrostatically in bilayer graphene quantum dots and their spin and valley texture of the single-particle spectrum has been studied in detail, their relaxation dynamics remains still unexplored. Here, we report on transport through a high-frequency gate-controlled single-electron bilayer graphene quantum dot. By transient current spectroscopy of single-electron spin states, we extract a lower bound of the spin relaxation time of 0.5 μs. This result represents an important step towards the investigation of spin coherence times in graphene-based quantum dots and the implementation of spin qubits.

read more


New publication: Tunable s-SNOM for Nanoscale Infrared Optical Measurement of Electronic Properties of Bilayer Graphene


ACS Photonics 8, 418 (2021)
Here we directly probe the electronic properties of bilayer graphene using s-SNOM measurements with a broadly tunable laser source over the energy range from 0.3 to 0.54 eV. We tune an OPO/OPA system around the interband resonance of Bernal stacked bilayer graphene (BLG) and extract amplitude and phase of the scattered light. This enables us to retrieve and reconstruct the complex optical conductivity resonance in BLG around 0.39 eV with nanoscale resolution. Our technique opens the door toward nanoscopic noncontact measurements of the electronic properties in complex hybrid 2D and van der Waals material systems, where scanning tunneling spectroscopy cannot access the decisive layers.

read more


Sebastian is a Falling Walls Winner in the category Digital Education 2020

The nominating institution RWTH Aachen on the breakthrough:
With the free and open source app phyphox many sensors (even present in old and cheap smartphones) become accessible for students and turns their smartphones in mobile physics labs. Phyphox offers tools and instructions from school to university level and from individual labs with household items during Covid19 lockdown to global experiments to determine Earth’s axial tilt. The app, downloaded over 1.5 million and translated in 17 languages, makes science education worldwide more attractive. For more information see here.

read more


New publication: Electron–Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots


Nano Letters 20, 7709 (2020)
Electron and hole Bloch states in bilayer graphene exhibit topological orbital magnetic moments with opposite signs, which allows for tunable valley-polarization in an out-of-plane magnetic field. This property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here, we show measurements of the electron–hole crossover in a bilayer graphene QD, demonstrating opposite signs of the magnetic moments associated with the Berry curvature. Using three layers of top gates, we independently control the tunneling barriers while tuning the occupation from the few-hole regime to the few-electron regime, crossing the displacement-field-controlled band gap. The band gap is around 25 meV, while the charging energies of the electron and hole dots are between 3 and 5 meV. The extracted valley g-factor is around 17 and leads to opposite valley polarization for electrons and holes at moderate B-fields. Our measurements agree well with tight-binding calculations for our device.

read more


New publication: Fractional quantum Hall effect in CVD-grown graphene


2D Materials 7, 041007 (2020)
We show the emergence of fractional quantum Hall states in graphene grown by chemical vapor deposition (CVD) for magnetic fields from below 3 T to 35 T where the CVD-graphene was dry-transferred. Effective composite-fermion filling factors up to ν=4 are visible and higher order composite-fermion states (with four flux quanta attached) start to emerge at the highest fields. Our results show that the quantum mobility of CVD-grown graphene is comparable to that of exfoliated graphene and, more specifically, that the p/3 fractional quantum Hall states have energy gaps of up to 30 K, well comparable to those observed in other silicon-gated devices based on exfoliated graphene.

read more

Showing 17 - 24 (180 total) - Previous Next