
Advanced lab course for bachelor students in physics

Experiment T7

Gaseous ionisation detectors and statistics

February 2021

Prerequisites

• Passage of charged particles through matter

• Gas-filled particle detectors

• Probability distributions and statistics

Goal of the experiment

• Operation of gaseous ionisation detectors

• Measurement of statistical distributions

Table of Contents

1 Gaseous Ionisation Detectors 4
1.1 Principle of the Gaseous Ionization Detector 4
1.2 Operating Regions of a Gaseous Ionization Detector 4
1.3 The Ionization Chamber (Example of a Simple Gaseous Ionization Detector) 5
1.4 The Proportional Counter . 6
1.5 The Geiger-Müller Counter . 8

2 PIN photodiode Geiger-Müller Counter 12

3 Probability Distributions and Statistics 13
3.1 Binomial, Poisson and Gaussian Distribution 13
3.2 Spread and Measurement Uncertainty . 14
3.3 The χ2 Fit . 14
3.4 The χ2 Test . 16

4 Supporting Hardware: Raspberry Pi, Arduino, and Python 18
4.1 Raspberry Pi . 18
4.2 Arduino and PIN Photodiode Circuit . 19
4.3 Python . 21
4.4 Running PYTHON From the LINUX Terminal 24

5 Procedure 25
5.1 Data collection using the Cobra3 Geiger-Müller (GM) counter 25
5.2 Data collection using the PIN semiconductor counter 27
5.3 Measurement of the Characteristic Curve of a Proportional Counter 28
5.4 Gain Measurement of a Proportional Counter 28

5.4.1 In Case This Part of the Experiment is Done Before the Geiger-
Müller Counter . 29

6 Analysis 30
6.1 Gas GM and Statistics . 30
6.2 Solid State GM and Statistics . 30
6.3 Measurements with the Proportional Counter 30

A Properties of the Radioactive Sources Used 31

2

Bibliography

[1] Gerd Otter, Raimund Honecker: Atome – Moleküle – Kerne,
Band I: Atomphysik, Band II: Molekül- und Kernphysik, Bo 184

[2] William R. Leo: Techniques for Nuclear and Particle Physics Experiments, Dr 155

[3] Konrad Kleinknecht: Detektoren für Teilchenstrahlung, Dr 143

[4] Walter Blum, Luigi Rolandi: Particle Detection with Drift Chambers, Dr 181

[5] Claus Grupen: Teilchendetektoren, Dr 189

[6] Hanno Krieger: Strahlenphysik, Dosimetrie und Strahlenschutz, Du 130

[7] Siegmund Brandt: Datenanalyse, mit Beispiel- und Übungsbuch, Cu 202

[8] Strahlenschutzverordnung, http://www.bfs.de

[9] The Particle Detector Brief Book, http://physics.web.cern.ch/Physics/ParticleDetector/BriefBook/

[10] Detecting Particles: How to “see” without seeing. . . ,
www.physics.ucdavis.edu/Classes/Physics252b/Lectures/252b lecture6.ppt

[11] Properties of argon-ethane/methane mixtures for use in proportional counters, Nucle-
ar Instruments and Methods, vol. 188, issue 3, pp. 521-534, (10/1981)

3

1 Gaseous Ionisation Detectors

1.1 Principle of the Gaseous Ionization Detector

When the detection of ionizing radiation is required within an experiment, gaseous io-
nization detectors are often employed. The detectors operate under the principle of gas
atom ionization and come in three flavors:

1. Ionisation chamber (not part of this experiment)

2. Proportional counter

3. Geiger-Müller counter

When an ionizing particle passes through the gas contained within the active volume of
the detector, the energy transferred from the ionization particle to the gas particle causes
an electron to be removed from the gas atom. This leaves an electron and an ionized gas
ion. When an electric field, of sufficient strength, is present within the gas volume, the
electron is accelerated away from the ion towards the anode. On its way to the anode, the
electron can produce additional electrons by colliding with other gas molecules within the
volume. When many charges reach the anode. This creates a negative voltage pulse that
is forwarded to the readout electronics by a coupling capacitor.

1.2 Operating Regions of a Gaseous Ionization Detector

Figure 1 shows the total charge Q arriving at the anode versus the counter voltage U
(logarithmic axes). Curves A and B show the behavior for two incident particles with
different ionizing power (e.g. A: α particle, B: β particle). The pulse amplitude at the
output of the counter is proportional to Q.

U2 U3 U U5U1

I II III IV V VI

log Q

4

B

A

U

Figure 1: Total charge versus counter voltage.

Region I: The pulse amplitude increases with voltage. As the voltage increases, the
probability that the created electrons and ions recombine decreases.

4

Region II: Above a voltage U1, recombination no longer occurs. The measured charge
stays constant for a certain voltage range and is equal to the sum of the primary
ionization charges. The ionization chamber operates in this region.

Region III: Starting from a voltage U2, the electrons are accelerated quite strongly to-
wards the anode. They can ionize other gas atoms in collisions generating charge
avalanches. The total charge remains proportional to the number of primary ioni-
zation charges. A counter which operates in this region is therefore called a pro-
portional counter. The multiplication of the primary ionization charge caused by
impact ionization is called gas amplification.

Region IV: Above U3, the proportion of the total charge to the number of primary
ionization charges is limited.

Region V: The Geiger region begins at U4. The principle property of the Geiger region
is that all ionizing particles cause the same voltage pulse, independent of their type
and energy. A counter which operates in this region is called a Geiger-Müller
counter. The gas amplification (≈ 109) is substantially larger for a Geiger-Müller
counter than for a proportional counter, meaning even without additional electronic
amplification, pulses with an amplitude of several volts can be generated.

Region VI: The pulses grow larger as voltage increases, until ultimately a continuous
discharge occurs, this quite often damages the counter.

1.3 The Ionization Chamber (Example of a Simple Gaseous Io-
nization Detector)

The ionization chamber is one of the oldest radiation detection devices and is still often
used due to its simple setup. A sample schematic is shown in figure 2.

Anode

Cathode

U I R

Figure 2: Schematic depiction of an ionization chamber.

The electron-ion pair creation energy in gases is roughly 30 eV, independent of the
type and energy of the ionizing particle. If, for example, the incident radiation deposits
1 MeV of energy in the chamber, then roughly 3 · 104 electron-ion pairs are produced.

5

This corresponds to a charge of roughly 5 · 10−15 C for each type of charge. Depending on
the construction, the charges created by the ionising particle are integrated to a constant
current (current mode) or generate a voltage pulse for every individual particle (pulse
mode).

For a typical capacitance of C = 10−12 F between both electrodes of the ionization
chamber, a chamber operated in current mode with a load resistor of e.g. R = 1012 Ω has
a time constant of 1 s, which is large compared to the time required for the collection of
the ions (≈ 1 ms). Therefore, one does not detect the collection of individual particles, but
measures the currents integrated over longer times. Such chambers are used for dose or
dose rate measurements for radiation protection and for monitoring, as well as controlling
the intensity at particle accelerators. The currents or charges to be measured are generally
quite small, so a good electric insulation is required for such a chamber. Another problem
is the recombination processes of the gas, which can interfere with the linear relation
between absorbed energy and measured current.

For a chamber operating in pulse mode, the resistance is on the order of R = 106 Ω
(to be confirmed), so the pulse length for the same capacitance is on the order of 1µs.

1.4 The Proportional Counter

Principle and Operation

Cathode

R

C

Anode Preamplifier

U

Figure 3: Schematic representation of a proportional counter.

A schematic of a typical proportional counter is shown in figure 3. The cylindrical tube
(cathode) is grounded. A large positive voltage (U ≈ 1 kV) is applied to a thin anode
wire (20 to 100µm in diameter) across a resistor (R ≈ 1 MΩ). Because of its cylindrical
geometry, the proportional counter contains an electric field, which increases sharply im-
mediately around the anode (E ∝ 1/r), with typical field strengths of 104 to 105 V/cm,
such that gas amplification occurs near the anode wire. The amplitude of the measured
pulse is proportional to the energy of the particle, so the proportional counter is an ide-
al detector for energy measurements. The gas amplification factor (104 to 106) increases
exponentially with the applied voltage. In addition to impact ionisation, UV photons are

6

emitted by excited atoms. These photons cause photoelectrons to be released from the
gas or the chamber walls, which can in turn cause new impact ionizations.

If the detector is filled with pure noble gases, the gain increases rapidly with voltage
because of the large number of photoelectrons. The proportional region is consequently
very small and poorly suited for practical applications. If polyatomic gases, e.g. methane,
are used, then the proportional region becomes large. The UV photons are absorbed by
the molecules, i.e. the molecules dissociate or vibrations are excited. Quanta emitted by
the vibrating states are generally less energetic and can not be used to free photoelectrons.
Mixtures of noble gases and polyatomic molecules are often used. Using a proportional
counter, resolution times of roughly 10 ns can be achieved.

Gas-flow Proportional Counters

In gas-flow proportional counters, the counting gas is continuously exchanged via a regula-
ting valve. These counters are particularly useful for measuring α, low-energy β particles,
as well as soft x-rays because the sample can be put directly inside the counter volume.
Counters with a gas-flow must be tightly sealed with gas-tight walls that short-range
radiation cannot penetrate. A schematic of a methane-gas-flow proportional counter is
shown in figure 4. At atmospheric pressure, an argon-methane mixture (10 % methane)
flows through the counter volume, in which a thin wire loop serves as the anode and the
walls as the cathode.

to pre−
amplifier

Argon−
methane
mixture

Sample

Anode wire

Insulator

Figure 4: Schematic representation of a methane-gas-flow proportional counter.

Characteristic Curve of the Proportional Counter

The characteristic curve of a counter shows the counter’s dependence on the pulse rate
(number of pulses per unit of time) as a function the voltage U applied. This curve is shown
in figure 5 for the proportional counter for both α and β particles present simultaneously.

For a specific voltage (threshold voltage UT), the minimum pulse height, which depends
on the input sensitivity of the subsequent amplifier, is reached. Because of the larger

7

α plateau

(α+β) plateau

U
T

U

Pulse rate (log.)

Figure 5: Characteristic curve of a proportional counter in the presence of both α and β
particles.

number of produced electron-ion pairs, only α particles are counted at initially. As the
voltage increases, β particles begin to be counted. Thus, the characteristic curve first
reaches the α plateau and then the (α + β) plateau (figure 5). By choosing the voltage
appropriately, the proportional counter can therefore distinguish primary ionizations of
different energies, i.e. α and β radiation.

1.5 The Geiger-Müller Counter

The Counter Discharge in the Geiger Region

When the field strength in a proportional counter is increased, more and more UV pho-
tons are produced in the avalanche. This increases the probability that photons generate
electrons through the photoelectric effect at other, more distant locations in the counter.
These electrons induce new avalanches, which cause the discharge to propagate along the
counter wire. At the end of the avalanche formation, the counter wire is surrounded along
its entire length by a plasma. When these conditions are present, the counter operates in
the Geiger region.

During the relatively short time (roughly 10 ns) in which the electrons are siphoned
off, the ion plasma, which moves slowly, shields the electric field of the counter wire.
The spatial charge of the ion plasma reduces the field strength. When this occurs, no
new avalanches can be triggered. The positive ions traverse to the cathode, where they
are neutralized at the counter tube. This can free secondary electrons from the surface,
which restart the discharge process. It should therefore be ensured, that the discharge is

”
quenched“.

Non-self-quenching counters induce the quench-process by using very large resistors
R in the counter circuit. When a particles passes through, the voltage drop across the
resistor is so large, that the voltage across the counter falls below the operating voltage.
For this to work, the time constant of the counter circuit must be sufficiently large, that
the voltage drop persists for long enough for all of the ions to arrive at the counter tube.

In self-quenching counters, a so-called quench gas (e.g. methane or carbon dioxide) is
mixed in with the counting gas. These gases have wide absorption bands to absorb UV
photons resulting from the gas amplification process. Additionally, there will be impacts

8

between the positive counting gas ions and the quench gas molecules. The charge of the
counting gas ions is transferred to the quench gas due to the different electron properties.
Only quench gas ions arrive at the counter tube. Because of the lower ionization potential
of the quench gas ions, they are unable to free secondary electrons at the tube, stopping
the discharge process.

Characteristic Curve of the Geiger-Müller Counter

If one exposes a Geiger-Müller counter to a constant amount of radiation and records the
pulse rate as a function of the applied voltage U , then the resulting curve would look like
that shown in figure 6. This is the characteristic curve of the counter. At the threshold
voltage UT , the counter is not yet in the Geiger region. The pulse height depends on
the energy of the particles. Only the largest pulses are counted. As the voltage is increa-
sed, the pulses grow larger and a larger number of pulses are counted. When the Geiger
threshold UG is reached, all pulses are equally large. At voltages above UG, the pulse rate
is essentially constant (plateau) under ideal conditions. In reality, however, it increases
slightly with increasing voltages due to increasingly frequent multiple discharges. The
slope of the plateau of good counters does not exceed 1 % pulse rate change per 100 V
voltage change. If the voltage is increased further, a continuous discharge occurs, which
damages the counter. To provide the proper working point, U = UG + 100 V should be
used. This guarantees that the operating voltage is not one the leading edge in the pro-
portional range nor in the discharge range, which could potentially damage the detector.
The choice of operating voltage generally depends on the type of counter and the gas
mixture. Depending on the gas mixture, it is possible that the plateau is very short or
practically non-existent.

U
T

U
G

Plateau

U

Pulse rate (log.)

Figure 6: Characteristic curve of a Geiger-Müller counter.

Dead Time and Recovery Time of the Counter

After a particle has caused a discharge in a Geiger-Müller counter, it takes a certain
amount of time for the positive ions to wander to the cathode due to their relatively low
mobility. During this time, the space charge of the positive ions weakens the field near the
counter wire. A particle which passes through the counter during this time either does
not cause a pulse or generates only a small pulse height.

9

A distinction is made between the actual dead time Td and the recovery time Tr. The
dead time is the time required after a discharge for the counter to be able to detect the
next particle. After this time, the ion tube has moved far away enough from the counter
wire for gas amplification to be able to occur again. The recovery time has passed, when
the ion cloud has reached the cathode. After this, the pulses reach their original height
again.

The dead time and recovery time of a counter can be visualised and measured with
an oscilloscope using a method specified by H. Guyford Stever: the output of the counter
is handed over to an oscilloscope and the trigger threshold Ut is set, such that the fully
formed pulses are shown at the start of the time axis. Until the end of the dead time, no
more pulses appear on the screen. Within the recovery time, pulses occur whose height
increases with time and finally reaches the original value. By superimposing multiple
images (afterglow of the oscilloscope), one gets a series of pulses, with an envelope from
which the dead time and recovery time can be read (see figure 7).

T
r

T
d

U
t

U

t

Figure 7: Stever diagram for determining the dead time and recovery time.

Crucial for the measurement is the time, after which the counter can once again
deliver a pulse which is large enough to be registered by the pulse counter. This so-called
resolution time τ depends on the amplification of the pulse counter and on the chosen
threshold of the amplifier and lies between Td and Tr.

Dead Time Correction

If a counter with resolution time τ measured a pulse rate of n particles per second, then
the counter was insensitive for a fraction n · τ of the time. If a total of N ionising particles
per second passed through the counter, then N ·n · τ of those particles were not detected.
The measured pulse rate n is the difference between the actual pulse rate N and the
number of particles per time N · n · τ which were not detected:

n = N −Nnτ or N =
n

1− nτ

In a so-called dead time stage, counter pulses are ignored during an adjustable time
interval τi after an initial counter pulse passes through. An artificial dead time of known
or measurable length τi is generated. If one measures the counter rate n1 for a stage dead

10

time τ1, which is considerably larger than the resolution time τ of the counter, then the
true pulse rate N is:

N =
n1

1− n1τ1
(τ1 � τ)

If one repeats this measurement with another dead time τ2, which is significantly smaller
than the resolution time τ of the counter, then the measured counter rate n2 is determined
by the resolution time of the counter:

N =
n2

1− n2τ
(τ2 � τ)

Exercise: Derive a formula for determining the resolution time of a counter by using a
dead time stage.

11

2 PIN photodiode Geiger-Müller Counter

The semiconductor diodes that many of us are most familiar with are a two terminal
device used in many electronic circuits to restrict the flow of current in one direction. In
the most common type of diodes, called p-n diodes, a crystal semiconductor, typically
silicon or germanium, have impurities added to both sides of the crystal. This process is
called ‘doping’. One side of the crystal is doped in such a way that on one side an excess
of negative charge carriers is created, while on the other side an excess of positive charges
is created. The negative excess region is often referred to as an ’n-type’ semiconductor,
while the positve excess region is referred to as ’p-type’. These two semiconductors are
brought together which results in a brief transfer of charges between the n- and p-type
semiconductors creating a small, third region called the ’depletion’ region. One terminal of
the diode is attached to the n-type semiconductor and the other terminal connects to the p-
type. When an electric field is applied in the direction of p-type to n-type semiconductors,
an electric current flows, but not in the reverse direction.

The PIN diode is similar to the p-n diode in that it has a p-type and an n-type se-
miconductor. However, there is an intermediate region, called the ‘intrinsic’ or ‘i-type’
region, sandwiched in between the p-type and n-type semiconductors. The primary diffe-
rence in operation of the PIN diode is that p-type charge carriers move into the intrinsic
region and fill holes within this region before moving to the n-type semiconductor region.

12

3 Probability Distributions and Statistics

3.1 Binomial, Poisson and Gaussian Distribution

The decay of a radioactive isotope is a typical example of a stochastic process. The atomic
nuclei of a radioactive source constitute a very large statistical sample. The observed decay
rate is determined by the decay probability of a single atomic nuclei. This probability is a
natural constant and is virtually unaffected by external conditions. The decays of different
nuclei are independent and are governed by the following probability distributions.

Binomial Distribution

If there are n radioactive atoms, each of which decays with a probability p in a fixed time
interval, then P (k) is the probability that exactly k atoms decay within this time interval.
Because these n atoms are identical, they obey the following combinatoric relation:(

n

k

)
=

n!

k! (n− k)!

. Then the probability distribution P (k) is given by the binomial distribution (see figure 8):

P (k) =

(
n

k

)
pk(1− p)n−k (k = 0, 1, 2, . . . , n) (1)

The mean of this probability distribution is given by:

k =
n∑
k=0

k P (k) = np,

. The standard deviation is then found to be:

σ =

√
k2 − k2 =

√√√√ n∑
k=0

k2 P (k)−
n∑
k=0

(k P (k))2 =
√
np(1− p).

Poisson Distribution

If one starts with the binomial distribution, it can be considered what happens when n
is very large, such that k is small compared to n. In this case this one is applying the
approximation in the limit n → ∞, p → 0 with np = const = µ. This yields the Poisson
distribution (see figure 9) as an approximation of the binomial distribution (1):

P (k) =
µke−µ

k!
(k = 0, 1, 2, . . .) (2)

The mean of the Poisson distribution is given by:

k =
∞∑
k=0

k P (k) = np = µ,

. The standard deviation is given by:

σ =
√
np =

√
µ.

The Poisson distribution specifies the probability that k events occur, when the expecta-
tion value is µ.

13

Gaussian Distribution

If one considers the case where the Poisson µ becomes large (where µ ≈ 10 is sufficient),
then the Poisson distribution (2) approximates as the Gaussian or normal distribution
(see figure 10):

P (k) =
1√
2π σ

exp

(
−(k − µ)2

2σ2

)
(3)

The Gaussian distribution is, in contrast to the previous distributions, continuous. That
is, it is defined for all real numbers k. It is symmetrical around the mean µ with a width
σ. Interestingly, in the case that the Gaussian distribution results from approximating
the Poisson distribution, µ and σ are not independent. The same relation holds as for the
Poisson distribution:

σ =
√
µ. (4)

3.2 Spread and Measurement Uncertainty

The fact that the standard deviation is set only by the mean for the Poisson and Gaussian
distributions is extremely important. This means that the spread of the measured number
of pulses N is known from just a single measurement. This is because, when N is not too
small, N = µ ≈ N and σ ≈

√
N . A larger quantities of measurements N leads to a more

precise result. This can be inferred from the relative error:

∆N

N
=
σ

µ
≈
√
N

N
=

1√
N

Assuming that a series of measurements are Gaussian distributed, the fraction of all
data points that lie within a given interval [N − a,N + a], is given by the integral of the
probability distribution (3) over the interval:∫ N+a

N−a
P (N) dN.

The probability that a single measurement falls within the given interval is thus 68.3 %
for a = σ, 95.4 % for a = 2σ and 99.7 % for a = 3σ.

3.3 The χ2 Fit

Often, one wants to understand how well the measured data matches the theoretical model
being used to explain, or understand the data. In our case the model under consideration
would be either the Poisson or Gaussian distribution. To compare the data with the
distribution, one common method of testing the “goodness of fit” is the χ2 test. The first
step is to generate the χ2 distribution that describes the comparison of the data to the
model/distribution.

To do this, consider a set of n measured values xi. Let these data points be normally
distributed data with errors σi. These will be compared against a set of values Xi = Xi(~a)
that are expected based on the model under consideration and depend on parameters
~a = (a1, a2, . . .). The parameters are to be estimated in such a way that the model

14

0 1 2 3 4 5 6 7 8 9 10
k

P

0

0,1

0,2

Figure 8: Binomial distribution with n =
10, p = 03. The probability that an un-
stable nucleus emits a γ quantum when it
decays, is 30 %. How many of ten observed
decays show a γ emission?

0 1 2 3 4 5 6 7 8 9
k

P

0,1

0,2

0,3

0

Figure 9: Poisson distribution with µ =
1.2. A radioactive sample contains 3 · 1012

unstable nuclei, each of which decays with
a probability of 4·10−13 within the next se-
cond. How many decays are observed per
second?

σσ

k

P

Figure 10: Special Gaussian distribution with µ = 4320, σ =
√

4320. The measurement
from figure 9 is performed for an hour. How many decays are observed within one hour?

15

matches the data points as accurately as possible. The function χ2(~a) is a measure of
the deviation of the measured values from the expected values, where each deviation is
weighted using the error on the data point:

χ2(~a) =
n∑
i=1

(xi −Xi(~a))2

σ2
i

.
The best match between the data points and the model corresponds to the minimum

of χ2(~a). Thus, the χ2 fit consists of varying the parameters ~a of the model, until the
minimum of χ2 has been found. After the optimal estimates of the parameters have been
found, the uncertainty on these estimates must be understood as well. The statistical error
on the estimated parameter values is obtained from the χ2 fit by increasing the value of
χ2(~a) from χ2

min to χ2
min + 1 (see figure 11).

N

 _

χ2
min

 _
N +σ

χ2
min+1

χ2

 _
N

 _
σ

N

Figure 11: Minimum of the function χ2

N
i

i
1 2 43 5 6 7 8 9 10

µ ?

Figure 12: Measurement of ten pulse ra-
tes Ni

As an example consider a set of measurements consisting of 10 pulse rates xi = Ni

shown in figure 12. As one expects the same value µ of the pulse rate for every one of
the ten measurements, the theoretical expectation is given by Xi(µ) = µ. In this case, it
depends on just a single parameter µ. If χ2(µ) is plotted against µ, the result is a parabolic
curve like in figure 11 with a minimum at µ = N . The mean N is the optimal estimate
of the parameter. This example only serves to demonstrate the procedure for finding the
χ2 fit.

3.4 The χ2 Test

The probability that a repetition of the experiment yields a larger value for χ2, despite
identical experimental conditions is an important consideration of many experimental
analyses. In statistics, it can be shown that, for large statistical samples, the probability
density associated with χ2 (the so-called χ2 distribution) is of the following form:

Pn(χ2) =
1

2 Γ
(
n
2

) (χ2

2

)n−2
2

exp

(
−χ

2

2

)
16

The number of degrees of freedom, n, is given by the number of independent equations
involving the parameter vector ~a = (a1, a2, . . .) and the observation vector ~x = (x1, x2, . . .).
One can determine the number of degrees of freedom by subtracting the number of variable
parameters from the number of data points, where in many cases one additional degree of
freedom is lost due to the normalization constraint on the theoretical distribution. Shown
in figure 13 is the probability distribution P (χ2) for n = 1, 2, 3, 5, 10 and 20. The curves
Pn(χ2) take on their maximum slightly before χ2 = n.

n = 20

(χ2)P

2χ

1

10
5

2 3

Figure 13: χ2 distribution Pn(χ2) for different values of n.

The integral

Fn(χ2) =

∫ ∞
χ2

Pn(χ̃2) dχ̃2

is the probability, that a larger value of χ2 is found when the experiment is repeated.
Therefore, Fn(χ2) is a measure of the goodness of the hypothesis, that the experimental
data are correctly described by the existing theory. Very small probabilities (F < 0,05)
indicate a poor agreement between experiment and theory. The function Fn(χ2) has been
plotted for several values of n in figure 14.

17

Figure 14: The function Fn(χ2) for several values of n.

4 Supporting Hardware: Raspberry Pi, Arduino, and

Python

4.1 Raspberry Pi

The Raspberry Pi (often referred to as Pi) is a brand of small single-board computer.
The particular version that is used in the lab course is the Raspberry Pi 4. These boards
have many uses from becoming replacements for conventional desktop computers to ap-
plication specific functions such as data collection or controlling experiment hardware.
The Raspberry Pi has 2x USB 2.0 ports, 2x USB 3.0 ports, a wired ethernet port, 2x mi-
croHDMI ports, a USB C port for connection to the AC power adapter, a 3.5 mm audio
ouput, as well as Bluetooth and wifi capabilities. The Raspberry Pi 4 is available with
1, 2, and 4 GB or RAM depending on the amount of computation needed. In lab course
experiments, you will find either the 2 GB or 4 GB models. On-board storage is supplied
by a microSD card, these come in various sizes, but typically 32 or 64 GB is available for
storage. The Raspberry Pi utilizes the Raspbian “Buster” OS which is a diluted Debian
Linux based OS similar to Ubuntu. This provides a useful terminal line and GUI to ma-
ke data collection, processing, and analysis easier. Lastly, the Raspberry has 40 General
Purpose Input and Ouput (GPIO) pins. These pins can be used to collect data directly
using the Raspberry Pi using I2C, SPI, and other protocols, as well as supplying either
3.3 V or 5 V power to other devices.

For this activity, the Raspberry Pi will be used as miniature computer that interfaces
to the Arduino data collection and will process the data received from the Arduino. To
start using the Raspberry Pi do the following:

• Ensure that the AC power adapter is plugged into the USB C port on the Raspberry
Pi and connect to the power strip.

18

• Ensure that the Raspberry Pi Keyboard and mouse are plugged into the Raspberry
Pi USB ports.

• Make sure that the microHDMI adapter is connected between the microHDMI port
on the Pi and the DVI connector on the monitor.

• After powering on the Raspberry Pi, both the red power and green action lights
should be on.

• During power up you should see a series of raspberries across the top left of the
screen.

• After 1-2 minutes you should arrive at the login screen. If you do not, please contact
the tutor immediately.

• To login: username = ‘pi’ and password = ‘labCourseRPi’

• If login is successful, it should take you to the Desktop screen

For those not used to using a UNIX/LINUX system, the following common commands
will be quite useful:

• pwd is the command for checking your present working directory, this will display
the folder location on the terminal line

• ll -thr is the command to list the files and folders in the current directory, the t, h,
and r flags list the folders and files according to time, in human readable, reverse
chronological order, respectively.

• cd is the command to change directories. Simply add the folder path after cd to
switch to the directory you wish to go to.

• mkdir is the command to make a directory. Simply add the folder name after the
command to create it.

4.2 Arduino and PIN Photodiode Circuit

Arduino is a propular brand of microcontroller that is used primarily for data collection.
These boards have many different inputs, analog as well as digital. These boards can also
supply 3.3 V and 5 V to power devices and can be setup to read in data using many
different protocols such as I2C and SPI.

For this experiment, the Arduino Nano is essentially inaccessible, so no additional
hardware description will be given. If a problem with the hardware is suspected, please
consult with the tutor and they will investigate further. Focus will be given here on setting
up the Arduino code and interacting with the PIN photodiode circuit. The Arduino code
is written in programs called “sketches” using the Arduino Individual Development Envi-
ronment (IDE). The code is written in a C-style language, those that have programming
experience with C++ will find it extremely similar. To start the arduino IDE, open a
terminal and type “arduino &”. This will open the IDE and bring up an empty template
with two functions: “setup()” and “loop()”.

The very first step is to declare and initialize the variables that will be needed:

19

• Create 2 variables: sigPin and noisePin as:

int sigPin = 2;

int noisePin = 5;

These pins are hard wired between the Arduino and the PIN circuit and can not be
changed.

• Create the following integer variables:

– 1 to count the number of signal counts e.g.

int sigCount = 0;

– 1 to count the number of noise counts

– 1 to use as a flag to listen for signal counts from the PIN circuit

– 1 to use as a flag to listen for noise counts from the PIN circuit

– 1 to keep track of the current time in ms

– 1 to keep track of the previous time window in ms

– 1 to count time in seconds

The next step is to fill the “setup()” function. This function is for initializations or
commands that should only be done once upon starting the Arduino. Here you should do
the following:

• Begin the serial connection with a baud rate of 9600 e.g.

Serial.begin(baudRate);

• Set the pin mode for both the signal and noise pins. They need to be set as inputs
to accept data and initialized to digital high e.g.

pinMode(pin, INPUT);

digitalWrite(pin, HIGH);

This is all the initialization that needs to be done

The last part of the code is to define the actions that need to be taken by the Arduino
in the “loop()” function. Make the Arduino do the following:

• Have the Arduino read the signal and noise pins and store them as integers e.g.

int sig = digitalRead(sigPin);

• The PIN is active on digital LOW. If the flag and the signal are both LOW increase
the signal count and set the flag HIGH. It is important to change the flag imme-
diately as the signal stays high for a few tens of ms and leaving this HIGH would
give an artificially inflated count. Otherwise, set the flag LOW. Do the same for the
noise pin:

20

if(sig == 0 && sigOn == 0){

sOn = 1;

sigCount++;

}

else if(sig == 1 && sigOn == 1){

sigOn = 0;

}

• Store the current time in milliseconds e.g.

currentTime = millis();

• If the difference between the current time in ms and the previous time edge is 1000
ms (1 s) increase the number of seconds elapsed by 1 and set the previous time edge
equal to the current time.

• Send the results to the Raspberry Pi via the Serial connection e.g.

Serial.println(String(sigCount) + ’, ’ + String(totalSec));

Make sure that the comma “,” is present, because the analysis program will need a
delimeter to split on to properly separate the counts from the time.

If you are happy with the Arduino code, click the checkmark in the upper left corner
to compile the code. Address any errors. If no errors, look in the “Tools” tab and check
that the “Board” registers the Arduino Nano and the “Port ” is not empty. Once this is
the case and you confirm that the Arduino is powered correctly, click the arrow next to
the compile button to upload to the Arduino. If there are no upload errors, under Tools,
click the “Serial Monitor” to bring up the monitor that reads the Serial output from the
Arduino to confirm that the Arduino is reading as expected. If you run into problems,
don’t hesitate to contact your tutor.

4.3 Python

PYTHON is a high-level interpreted programming language that has recently found po-
pularity among the physics and computer science community for, among many things,
performing data processing and data analysis. Unlike the C-style language that you used
for the Arduino coding section, PYTHON does not end commands in semi-colons “;”,
encapsulate multiline conditionals within curly braces “{}”, or require datatype declara-
tions as part of declaring variables. This can make the flow of the code much faster and
easier to read. However, PYTHON handles the first two items by the use of white space
and indentation. For example, when making an “if” clause to check something:

if(condition):

command1

21

command2

...

lastCommand

Rest of code

A PYTHON program will be used to collect the data from the Arduino and store it
as a .txt file. To write the code open an editor, e.g. Emacs or nano, e.g. for Emacs:

$ emacs -nw <PythonFileName.py>

Here the -nw option opens the terminal (non-windowed) version of Emacs. Now you
should write a program that does the following:

• Import the serial and argparse libraries that will allow PYTHON to communicate
with the Serial line and take in command line arguments, respectively. e.g.

import serial

• Create an Argument Parser object e.g,

parser = argparse.ArgumentParser()

• Create 3 argparse variables to take in info from the command line for the output
file name, data collection time, and number of data points e.g.

parser.add_argument(’-o’, type=str, help="output file name")

The add argument requires the following arguments: the name of the agrument, the
type definition, and a help message. The output name should be a string, time a
float, and number of points an int, respectively.

• Next parse the arguments given from the command line e.g.

args = parser.parse_args()

• Create a filename object and utilize the input from the command line e.g.

outName = args.o + ".txt"

• Open a text file to store the incoming data e.g.

outFile = open(outName, ’w’)

The ’w’ flag tells Python to overwrite the existing file if a file of the same name
exists.

22

• Create a serial connection variable passing the port name from the “Port” variable
in the Arduino IDE as the first argument and the baud rate as the second argument
e.g.

ser = serial.Serial(’/dev/ttyACM0’,9600)

• Create the following variables and initialize them to 0:

– 1 variable to count the total number of counts

– 1 variable to store the previous total of counts from the previous time window

– 1 variable to store the count for the current data point

– 1 variable to store the total number of elapsed seconds

– 1 variable to store the number of data points

– 1 variable that is a temporary time keeper

• Create the “while” loop to keep the Serial connection open e.g.

while True:

command1

command2

...

• Read in the time and store it temporarily

• read the Serial line and store it as a list that splits on the comma “,” e.g.

line = ser.readline()

listOfData = line.split(’,’)

• Create a for loop that gets the count and the elapsed time.

• Check to see if the modulus of elapsed time with the time window is 0. If this is true,
set the data point count to be the difference between the total count and previous
count.

• increase the number of data point variable by 1

• write these to file

• Update the previous count variable to be the current total count

• Lastly, check to see if the number of data points are equal to the total requested
from the command line.

23

4.4 Running PYTHON From the LINUX Terminal

Running the PYTHON program that you have just made from the LINUX Terminal is
straight forward. After you have finished creating your PYTHON program, you can run
your program by:

$ python <PythonFileName.py> -a <value> -b <text> -z <value>

Here the flags ‘a’, ‘b’, and ‘z’ are options that you have specified using your Argu-
mentParser() within your PYTHON program. The spaces are important, however, the
<value> and <text> should match with the expected data type for the flag specified in
the PYTHON program. One should note that if the variable/flag is expecting a string,
this should be placed in between double quotes, e.g. “FileName.txt”. If you have specific
question about how to run this PYTHON program please ask your laboratory supervisor.

24

5 Procedure

5.1 Data collection using the Cobra3 Geiger-Müller (GM) coun-
ter

1. Place the Sr-90 source inside the lead enclosure with the exposed opening of the
source centered on the active area of the GM counter.

2. Make sure that the Cobra3 measurement aparatus is connected to wall power and
the green indicator has a solid green light.

3. On the desktop PC, open the Cobra3 measurement program “Measure” by double
clicking the icon “m” as shown in figure 15.

Figure 15: The main Desktop for using the Cobra3 GM. To start the “Measure” program,
double click on the “m” icon.

4. To collect data click the red record button on the left side of the menu. This will
bring up the measurement menu window as shown in figure 16.

5. In the measurement menu window select the following: for “XData” choose “Time
t/s”, for “Unit” select “Impulses”, for “Time inter” select a time window value that
will give a mean of (at least) 25 if enough data points are taken to give a Gaussian
distribution. The other options are not critical and can be selected or not as you
prefer. These settings are shown in figure 17

6. Once satisfied with the settings, submit them. This will bring up the main measu-
rement window.

25

Figure 16: The main opening screen in “Measure” program. Select the red circle to start
setting parameters for data collection

Figure 17: The diaglog box for selecting data collection parameters for the Cobra 3 GM
counter in Measure

7. Click “Start measurement” as shown in figure 18 and allow the program to run
collecting enough data points to produce a Gaussian distribution.

8. Once the appropriate number of events have been collected, save the measurement.

9. The file is saved as a .msr file. To store this as a file that can be easily read for
analysis pruposes, export the data to a .txt file.

10. Remove the Sr-90 source from the lead enclosure and repeat the same process for
cosmic ray muons with the following modifcations:

• Collect enough data points to produce a Poisson distribution.

• Use a time window that will give a mean no larger than 2.

26

Figure 18: The progress window to track the progress of the measurement. To start a data
collection run, click the “Start measurement” button.

5.2 Data collection using the PIN semiconductor counter

1. Power on the Raspberry Pi and open the Arduino Individual Development Environ-
ment (IDE)

2. Write a simple Arduino program to collect data from the PIN counter.

3. Once the program compiles without error, upload to the Arduino. If you encounter
significant difficulties with coding, please consult your tutor.

4. Check to make sure that the data collectd by the Arduino makes sense with cosmic
ray muons by using the Serial Monitor in the IDE.

5. After making any necessary changes to the Arduino program, write a simple Python
program to read the data from the Arduino and save it to file. Again, if you run
into difficulties with Python coding, please ask your tutor.

6. Once this is ready, collect enough cosmic ray events to produce a Poisson distribution
with a mean no larger than 2.

7. After the cosmic ray data has been collected, the Sr-90 source will likely be available
to use. Collect data similar to that done with cosmic ray muons except for the
following:

• Collect enough data points to produce a Gaussian distribution.

• Use a time window that will give a minimum mean of 25.

27

5.3 Measurement of the Characteristic Curve of a Proportional
Counter

The proportional counter must be flushed continuously with a counting gas, argon-methane
(ArCH4) in our case. Set the gas flow at approximately 4 divisions on the flow meter. Bub-
bles should be visble in the viewing glass. The maximal voltage for this counter is
2 kV, so make sure to pay attention to the switch next to the voltage control;
this multiplies the set voltage by the value indicated by the knob.

1. Insert the Am-241 source into the sample changer and measure the pulse rate as well
as the pulse height (measure of gas amplification) of the α particles as a function
of voltage. Choose suitable voltage steps. Why are the pulses not all equally large,
even though the particles are monoenergetic?

2. Repeat the measurement using the C-14 source.

3. Measure the cosmic ray muon background: measure the pulse rate without a source
in the counter. It makes sense to use the same voltage steps used before.

4. Choose an operating voltage of V = VG + 100 V. From here on, this setting should
not be changed any more.

5. Check the intensity of the background: measure the pulse rate without a source
underneath the counter.

6. Produce a Stever diagram using the oscilloscope. For this, use the direct output of
the proportional counter. Estimate the dead time and recovery time of the counter.

7. Use the pulses of the 1-MHz-generator, which are available from the backside of the
pulse counter, and verify the electronically generated dead times indicated on the
dead time stage. To this end, use the pulse counter and write down the respective
pulse rates.

8. The pulses from the proportional counter should now pass through the dead time
stage before reaching the counter. Measure the count rates for a small and a large
dead time of the dead time stage and determine from this the dead time of the
counter. Make sure to measure a sufficiently large amount of events per time setting.

5.4 Gain Measurement of a Proportional Counter

We have several different mixtures of gases (ArCH4 and ArCO2). Perform the following
test for at least three different gas mixtures. Make a coarse voltage scan similar to before
to locate the plateaus for the different gas mixtures. Select three voltage points on the β
plateau for Sr-90 and Am-241 and three voltage points on the α plateau for Am-241. For
each voltage point collect enough sets of counts in 1s time intervals to get a well-measured
Gaussian average for this data point. Then move to the next data point. Once all of the
voltage points for the gas mixture have been collected change the gas mixture and allow
O(5 minutes) for the gas mixture to flow before collecting data. Repeat this for all gas
mixtures.

28

5.4.1 In Case This Part of the Experiment is Done Before the Geiger-Müller
Counter

• If you have some time left, you can already do point 2 from the measurements on
statistics using the proportional counter. For this purpose, pick a voltage on the α
plateau.

• Set the measurement time such that the average event count per measurement is
at most 2. Take enough measurements to be able to produce a Poisson distribution
later on.

29

6 Analysis

6.1 Gas GM and Statistics

1. Split the measured values into sensible intervals and present them as histograms.

2. For each of the measurements (Gaussian and Poisson distributions), calculate the
mean and the standard deviation. From each of these, calculate the expected distri-
bution and plot it together with the measured distribution.

3. Test the goodness of your prediction of the measured distribution by doing a χ2

test for each distribution. Calculate the χ2 between the expected and measured
distributions and quantify the probability of the hypothesis using figure 14. Only
consider intervals containing more than 4 entries.

4. Using a program (e.g. Origin, Maple, Mathematica, Root, ...), perform χ2 fits to the
measurements. For each distribution, compare the mean, standard deviation and χ2

with point 2 and 3.

5. Compare and contrast the results obtained by the two different types of GM coun-
ters. Do the reults make sense? What could be causing observed differences?

6.2 Solid State GM and Statistics

1. Repeat the steps from section “Gas GM and Statistics”

2. How do the Gaussian plots compare? How do the Poisson measurements compare?

3. Compare and contrast the results obtained by the two different types of GM coun-
ters. Do the reults make sense? What could be causing observed differences?

6.3 Measurements with the Proportional Counter

1. Calculate the resolution time using the dead time stage and compare this with the
results obtained using the oscilloscope. Plot the dead time correction.

2. Plot the counter’s characteristic curve for the α source and again for the β source.
Include the correction for the dead time.

3. Plot the measured pulse rates of the three samples versus voltage and discuss the
differences.

4. Plot the pulse heights of the samples as a function of the voltage in a suitable scale.
Justify your choice. Discuss the curves.

5. With the data points from the gas mixtures, plot the number of counts as a function
of voltage.

6. For each voltage point generate a relative gain plot taking the ArCH4 values as the
reference.

7. Discuss how the gas composition affects the gain of the proportional counter.

30

Appendix

A Properties of the Radioactive Sources Used

• 241
95Am: Source is open, placed in recessed and covered enclosure to prevent direct

contact. Substance on the front side, 1 mm in diameter, the soiurce is sunk 1.5 mm
into the casing; covering foil in front of the radioactive substance: 3µm of Gold
(ρ = 19.3 g/cm3). Decay chain:

241
95Am

α (5,65MeV)−→
T1/2: 433 y

237
93Np

α (4,96MeV)−→
T1/2: 2,14·106 y

233
91Pa

β− (0,57MeV)−→
T1/2: 27,0 d

233
92U

α (4,91MeV)−→
T1/2: 1,59·105 y

229
90Th

229
90Th

α (5,17MeV)−→
T1/2: 7932 y

225
88Ra

β− (0,36MeV)−→
T1/2: 14,9 d

225
89Ac

α (5,94MeV)−→
T1/2: 10,0 d

221
87Fr

α (6,46MeV)−→
T1/2: 286 s

217
85At

217
85At

α (7,20MeV)−→
T1/2: 32,3ms

213
83Bi

β− (1,42MeV)−→
T1/2: 45,6m

213
84Po

α (8,54MeV)−→
T1/2: 3,72µs

209
82Pb

β− (0,64MeV)−→
T1/2: 3,25 h

209
83Bi

• 90
38Sr: Enclosed source; perspex disk mounted in sheet steel. Decay chain:

90
38Sr

β− (0,55MeV)−→
T1/2: 28,9 y

90
39Y

β− (2,28MeV)−→
T1/2: 64,1 h

90
40Zr

• 14
6C: Enclosed source, decay:

14
6C

β− (0,16MeV)−→
T1/2: 5700 y

14
7N

31

	Gaseous Ionisation Detectors
	Principle of the Gaseous Ionization Detector
	Operating Regions of a Gaseous Ionization Detector
	The Ionization Chamber (Example of a Simple Gaseous Ionization Detector)
	The Proportional Counter
	The Geiger-Müller Counter

	PIN photodiode Geiger-Müller Counter
	Probability Distributions and Statistics
	Binomial, Poisson and Gaussian Distribution
	Spread and Measurement Uncertainty
	The 2 Fit
	The 2 Test

	Supporting Hardware: Raspberry Pi, Arduino, and Python
	Raspberry Pi
	Arduino and PIN Photodiode Circuit
	Python
	Running PYTHON From the LINUX Terminal

	Procedure
	Data collection using the Cobra3 Geiger-Müller (GM) counter
	Data collection using the PIN semiconductor counter
	Measurement of the Characteristic Curve of a Proportional Counter
	Gain Measurement of a Proportional Counter
	In Case This Part of the Experiment is Done Before the Geiger-Müller Counter

	Analysis
	Gas GM and Statistics
	Solid State GM and Statistics
	Measurements with the Proportional Counter

	Properties of the Radioactive Sources Used

