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Introduction

Due to the ongoing miniaturization of electronic components, especially in case of the
transistor, quantum mechanical effects gain influence on electron transport in reduced
dimensions. Without a profound knowledge of the relevant physics in this field, it is
impossible to derive new functional structures and understand the observed transport
phenomena. A prime example displaying the fundamental changes to transport charac-
teristics in semiconductors in the quantum regime is the quantum Hall effect. Klaus von
Klitzing received the Nobel prize for its discovery in 1985. The peculiar changes to the
density of states of a two dimensional electron gas under the influence of an external
magnetic field will be discussed in detail. It is the goal of this experiment to gain first
experiences in low-dimensional transport measurements in semiconductors by thoroughly
investigating the quantum Hall effect and related phenomena. Additionally, the extraction
of material specific quantities from the transport data will be trained.
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Chapter 1

Scattering in two dimensional electron gases

In this chapter we review a few basic transport related quantities and their microscopic
origins. A central approach to describe electrons in solids is based on Bloch waves. In this
single particle picture, a perfectly periodic lattice potential does not lead to scattering
of the electrons. Perturbations of the periodicity are the only source of scattering, thus
leading to a finite resistance in transport measurements.
Within the Drude model, all free electrons carry the electric current and the mean scat-
tering time τ is introduced to account for the time between two scattering events. τ is
also the characteristic relaxation time, which the electronic system needs to return to its
thermal equilibrium from any perturbation. However, due to the Pauli principle, electrons
away from the Fermi surface are not able to gain energy from an electric field, because all
energetically reachable states are occupied. Proportional to τ and also a measure for how
sensitive electrons react to an applied electric field is the mobility

µ = e

m∗
τtr(EF), (1.1)

with e being the elementary charge andm∗ the effective mass. Throughout this instruction,
the charge of an electron will be q = −e. We now also specify τtr as being the relaxation
time probed by transport, thus only the electrons at the Fermi Energy contribute. Adding
the charge carrier concentration ns and the length l and width w of the probed sample
area, we are able to calculate the sample resistance Rxx excluding an external magnetic
field via

Rxx = l

w
· 1
σxx

= l

w
· 1
nseµ

. (1.2)

σxx is the x-component of the conductivity tensor and since we are treating two dimen-
sional systems, the thickness does not appear in the above equation and the dimension of
ns = m−2.
Multiple sources of scattering are found in semiconductors. The resulting individual con-
tributions τi to the mean transport scattering time may be summed in case of independent
scattering mechanisms.

1
τtr

=
∑
i

1
τi

(1.3)
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Chapter 1 Scattering in two dimensional electron gases

The different contributions do not only vary in strength but also significantly in their
temperature dependencies, which will now be discussed in further detail.

1.1 Phonon scattering

A phonon is a quantum mechanical quasi particle, which posses energy ~ω and momentum
~k. Phonons represent the vibrational motion of collectively excited lattice atoms, oscil-
lating around their equilibrium positions. The quasi particles are delocalized, meaning no
specific location may be attributed to them. Increased temperature leads to greater dislo-
cation from the equilibrium positions, thus disturbing the lattice periodicity and causing
scattering of the electrons.
One distinguishes between optical and acoustic phonons. The latter may be thought of
as sound waves, propagating through the crystal. In this case the atoms within a unit
cell always move in phase. This is not true for optical phonons, where the atoms oscillate
out of phase. In case of differently charged sublattices, the vibration induces oscillating
dipole moments (fig. 1.1), which interact with photons. Therefore these modes are called
’optical’.
As a rule of thumb, the electronic transport in 2DEGs is limited by optical phonon scat-
tering above 60 K. Acoustic phonons limit binary semiconductors between 10 K and 50 K
and ternary between 40 K and 50 K. Below 10 K phonon scattering becomes negligible.
The temperature dependence of the scattering rate of the acoustic phonons may be derived

Acoustic

Optical Mode

Mode

Figure 1.1: Comparison of transverse acoustic and optical phonons with the same wave length for a
material with a two atom basis.

by a few plausible arguments. The number of scattering events in a certain time interval
is proportional to the scattering cross section Σ and the thermal average over all electron
velocities 〈v〉, meaning τ ∼ (Σ · 〈v〉)−1. For sufficiently high temperatures, the electronic
transport through the heterostructure is not yet confined to the area of the 2DEG and
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Section 1.3 Alloy scattering

〈v〉 is proportional to
√
T as for a three dimensional semiconductor. Since the scattering

cross section may be considered proportional to the square of the oscillation amplitude of
a phonon, which is proportional to T, the result is:

τph ∼ T−
3
2 (1.4)

With lower temperature, the probability to excite a phonon is reduced, thereby increasing
the mean time between two scattering events.

1.2 Defect scattering

Any disturbance of the periodicity of the lattice potential, either unintentional due to
impurities and vacancies or intentional due to dopants, leads to scattering. Usually, this
effect dominates below 10 K.
In analogy to phonon scattering, the temperature dependence of the relaxation time τds

depends on the scattering cross section Σds. Since the interaction of an electron with a
charged defect is described by Rutherford scattering, Σds is inversely proportional to the
fourth power of the particles’ velocity. Thus τds will be proportional to 〈v〉3 in the end. For
sufficiently low temperatures transport is limited to the 2DEG and the electron velocity
does not depend on temperature. It follows:

τds ∼ T 0 (1.5)

Compared to conventional semiconductors, a 2DEG behaves like a metal at low tempera-
tures.

1.3 Alloy scattering

Alloy scattering occurs in different III-V semiconductors like AlxGa1−xAs or InxGa1−xAs.
The statistical occupation of valence-III lattice sites by either Gallium and Aluminum or
Gallium and Indium introduces a weak arbitrary potential, which leads to scattering of the
electrons. In AlGaAs/GaAs heterostructures electrons are mainly confined to the GaAs,
therefore alloy scattering is reduced. However, in InGaAs/InP heterostructures the 2DEG
lives in the alloy and is dominated by alloy scattering for low temperatures (T ≤ 40 K).
Like defect scattering, alloy scattering is temperature independent for low temperatures.
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Chapter 1 Scattering in two dimensional electron gases

1.4 Electron scattering

Due to the conservation of the total momentum of the electrons, electron-electron scatter-
ing does not play a role for the calculation of the transport relaxation time. The mobility
of the 2DEG is mainly governed by the scattering with phonons, defect scattering and
alloy scattering.

1.5 Transport and quantum relaxation time

As previously discussed, one may extract the transport relaxation time from measurements
of the sample resistance. However, this quantity is not suitable to calculate the components
of equation 1.3. This is due to the requirement, that for an electron to contribute to a
measurable resistance, it needs to reduce its momentum component parallel to the outer
electric field significantly. If S(Θ) represents the probability to be scattered at an angle
Θ from the direction of transport, then the transport relaxation time is:

1
τtr

=
∫ π

0
dΘS(Θ)(1− cosΘ) (1.6)

The term (1 − cosΘ) accounts for the relative weight according to the above argument.
The quantum relaxation time τq, which is the life time of an electron in a certain single
particle state, describes the mean time between two scattering events. In this case is does
not play a role how big the deflection from the direction of transport is, thus

1
τq

=
∫ π

0
dΘS(Θ). (1.7)

Thereby, within the boundaries of the discussed scattering mechanisms, τtr ≥ τq.
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Chapter 2

Quantum transport phenomena

2.1 Basic description of 2DEGs in magnetic fields

In order to create semiconductor heterostructures, epitaxial growth methods are utilized.
Combining suitable materials and paying close attention to the thickness of the different
layers is essential. Materials with similar but different band gaps and lattice constants are
grown in a layer-by-layer fashion, leading to the formation of a two dimensional electron
gas, if done correctly (fig. 2.1). In our example, a combination of barely doped InGaAs and

Figure 2.1: Layers of an InGaAs/InP heterostructure and schematic development of the conduction
band energy relative to the Fermi energy.

highly n-doped InP in used. InP shows a much larger band gap than InGaAs. Growing
them on top of each other lead to a bending of the conduction and valence bands at the
boundary. However, the Fermi energy EF remains constant across any material interface,
while the sample is in equilibrium. In combination with the remaining discontinuities in
the valence and conduction band ∆EV and ∆EL, a bending of the conduction band to-
wards EF inside the InGaAs results. Due to the large band gap mismatch, the conduction
band is pushed beneath EF at the InGaAs/InP interface. Hence a triangular potential
well develops beneath EF (fig. 2.2), hosting electrons in a very narrow layer, extending
perpendicular to the direction of growth. Due to the strong confinement, it is called a
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Chapter 2 Quantum transport phenomena

two-dimensional electron gas.
The electrons move freely in the 2DEG, only limited by the different sources of scattering.
In order to reduce electron scattering originating from the donor atoms in the InP layer,
an additional thin spacer layer (typically 10 − 40 nm) of undoped InP is added to the
stack. Increasing the distance to the ionized donor atoms in the n-InP layer increases the
mobility greatly (fig. 2.1).
The strong confinement of the electrons within the triangular potential well leads to

Figure 2.2: Schematic depiction of bands at an InGaAs/InP interface. EL: Conduction band edge, EV:
Valence band edge, ∆EL: Conduction band discontinuity, ∆EV: Valence band discontinuity. (left) Not
in contact. (right) In contact.

a quantization of electronic states in the z-direction of growth. Freely moving electrons
portray a parabolic energy dispersion, which remains valid for the kinetic energy in the xy-
plane. However, in z-direction subbands Ejz form, which basically offset identical parabo-
las. Thus the total kinetic energy is described by:

Ej(kx, ky) =
p2

x + p2
y

2m∗ + Ejz =
~2k2

x + ~2k2
y

2m∗ + Ejz , j = 0, 1, 2, . . . (2.1)

Here m∗ is the effective mass of the electrons, which is determined by the curvature of the
band structure. k = 2π

λ = p
~ is the electron’s wave vector.

In the vast majority of samples, the degree of doping is adjusted to only fill states in
the j = 0 subband. At low temperatures and thus very limited thermal excitation, all
electrons occupy states belonging to E0

z . Therefore, the extension of the electrons’ wave
function in z-direction will correspond to the E0

z state. Since this extension will be finite,
one also refers to quasi-2DEGs.

2.1.1 The 2DEG’s density of states

For the following argumentation, the finding below is paramount:
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Section 2.1 Basic description of 2DEGs in magnetic fields

The density of states (DOS), meaning the number of states which may be occupied
in a certain energy interval, is constant in a two dimensional system [1].

Figure 2.3: Density of states of a 2DEG without magnetic field. A stepwise increase for the onset of
the different subbands j = 0, 1, 2 is visible.

We will now take a closer look at the deduction. In a 2D system of dimensions L1 and L2,
the electrons may posses the wave numbers ki = n2π

Li
and every state in the 2D k-space

(kx, ky) is attributed with an area of 4π2

L1L2
. All states with energy E = ~2~k2

2m∗ lie on a circle
with radius k = |~k| in k-space. Thus the total number of states belonging to a certain
energy is

Z = πk2

4π2

L1L2

= L1L2
4π · 2m∗E

~2 · gsgv. (2.2)

The spin degeneracy factor gs = 2 is a manifestation of Pauli’s priciple, describing the
possibility to occupy every state with two electrons of opposite spin s = ±1

2 . The valley
degeneracy factor is gv = 1 for InGaAs/InP and is higher for other systems like silicon
(gv = 6), germanium (gv = 8) or graphene (gv = 2)[2, p. 38-39]. It describes the possibility
to find multiple equivalent constant energy surfaces in the first Brillouin zone, which follow
the same dispersion relation. The dispersion relations’ origins only lie at different k-points,
usually high symmetry points like X, L or K. Valley degeneracy is only lifted in high
magnetic fields.
In our case, we only care about the number of electrons which are allowed to occupy a
certain area Zs = Z

L1L2
. From its derivative dZs

dE , we gain the information on how many
states are available around a certain energy. Thus, the density of states (DOS) Dj(E) at
energy E in subband j is given by:

Dj(E) = dZs
dE

= gsgv ·
m∗

2π~2 = const. (2.3)
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Chapter 2 Quantum transport phenomena

If the number of electrons is large enough to start filling an additional subband, a jump
occurs in the density of states (compare fig. 2.3). Since we assume to only occupy the fist
subband, we will use a constant DOS D(E) for all considered energies. Thus, the charge
carrier density per unit area ns reads

ns =
∫ EF

0
D(E)dE = gsgv ·

m∗

2π~2 · EF. (2.4)

2.1.2 2DEG in a magnetic field

Applying a magnetic field of strength B perpendicular to the 2DEG constrains the motion
of the electrons even further. Classically, electrons are forced on cyclotron orbits with fre-
quency ωc = eB

m∗ . In a quantum mechanical picture, electrons now occupy states belonging
to quantized energy eigenvalues with distance ~ωc, called Landau levels (LLs). We find
the total energy of the electrons

Ejn = Ejz + ~ωc(n+ 1
2) + sµBgB, n = 0, 1, 2, ... (2.5)

Here n is a new quantum number called the LL index. The last term treats the two pos-
sible spin projections in the magnetic field, with s = ±1

2 being the spin quantum number,
µB the Bohr magneton e~

2me
and g the Landé factor. Therefore, the 2D-DOS (eq. 2.3)

splits up in a sequence of δ-peaks at finite magnetic fields. This is schematically shown in
figure 2.4. The broadening of the LLs originates from potential fluctuations in the sample,
which are due to any defect or ionized atom within or adjacent to the layer supporting the
2DEG. An electron moving on a specific cyclotron orbit, thus belonging to a certain LL,
may do so in a potential valley or on top of a potential hill. Thereby, the sharp energy of
a LL is smeared out by the degree of potential roughness.
The splitting of LLs due to the spin degree of freedom, following equation 2.5, is not in-
cluded at this point, since m∗ � m0 (m0 being the free electron’s mass) is small compared
to ~ωc.
As the condensation of states into LLs happens homogeneously, meaning it will be com-
prised of states Ejn± 1

2~ωc, it is straight forward to calculate the number of states in every
LL, also called its degeneracy.

Degeneracy of a LL: NL = Dj(E)~ωc = eB

h
· gsgv = B

φ0
· gsgv. (2.6)

φ0 = h/e is the fundamental quantum of flux. The last expression fosters the picture, that
for every flux quantum there is one state available in each LL. Classically speaking, the
electrons perform their cyclotron motion centered around a flux quantum. The quantum
number, which distinguishes between the different states is the location on the sample. If

10 RWTHAachen University



Section 2.1 Basic description of 2DEGs in magnetic fields

one assumes, that the flux quanta are distributed homogeneously over the sample, then
this ensues a homogeneous charge carrier distribution for a completely filled LL. For an
arbitrary number of charge carriers, a certain number of LLs will be filled.

Number of filled (degenerate) LLs: ns
NL

= hns
eB
· 1
gsgv

(2.7)

Only reaching high magnetic fields will lift the spin and valley degeneracies. However, the

Figure 2.4: Condensation of states into Landau levels with the energetic difference ~ωc.

very frequently used filling factor ν describes the number of filled LLs, which are neither
spin nor valley degenerate.

ν = hns
eB

(2.8)

In the InGaAs/InP system under investigation, each filled LL will contribute a filling
factor of ν = 2, as long as the spin degeneracy is not lifted. For other materials like silicon
(gv = 6), filling one fully degenerate LL will add a filling factor of ν = 12.

2.1.3 Zeeman effect

We will now treat the electron spin in more detail. The description arises from the magnetic
dipole moment µ, which will orient itself relative to a magnetic field. This additional degree
of freedom is quantum mechanically defined by a spin operator

S = 1
2σ, (2.9)

RWTHAachen University 11



Chapter 2 Quantum transport phenomena

where the components of σ are Pauli matrices:

σx =
(

0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)

The magnetic moment of the electron is given by

µ = −1
2gµBσ, (2.10)

with µB = e~/2me the Bohr magneton and g = 2.0023 the Landé factor. µB has a value
of 9.274 · 10−24 Am2 = 57.88 µeV/T.
In an external magnetic field of strength B, the magnetic moment feels a turning moment
of

M = µ×B. (2.11)

The corresponding Schrödinger equation is the Pauli equation:

i~
∂

∂t
| s >= −1

1gµBσB | s > (2.12)

Here | s > is a general spin state, comprised of a superposition of |↑> and |↓>. |↑> and
|↓> represent the parallel and anti parallel orientation of the spin regarding the magnetic
field. Assuming a magnetic field in z-direction, the Pauli equation reads

i~
∂

∂t
| s >= −1

1gµBσzBz | s >, (2.13)

yielding the energy eigenvalues
E± = ∓1

2gµBBz (2.14)

Thus, the external magnetic field lifts the spin degeneracy and the energy splitting

∆E = E+ − E− = gµBB (2.15)

is called Zeeman energy. Importantly, it is linear in B. In the QHE context, the Zeeman
effect manifest as a splitting of LLs. For high magnetic fields it is clearly visible. In the
small field limit however, inherent broadening of the LLs undermines a sufficient separation
and thermal broadening also disguises the observation.

2.2 Shubnikov-de Haas oscillations

We will now describe the actual transport measurement and explain its characteristic fea-
tures. Using a Hall bar sample geometry as in figure 2.5, one is able to comfortably extract
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Section 2.2 Shubnikov-de Haas oscillations

the longitudinal (parallel to the direction of current) and transverse (perpendicular to the
direction of current) resistance. We will refer to them as Rxx and Rxy respectively. These
two quantities permit a detailed analysis of the specific features of a semiconductor.
Actually, the Hall bar is designed to carry out an ideal four probe measurement. Most
importantly, the voltage probes are separated from the source and drain electrodes, which
provide the current. If the voltages are probed by a highly resistive measurement device
(10 MΩ input resistance of the lock-in), no significant current will pass through the con-
tacts, which always have a finite resistance. Thus there will be no voltage drop across
them (U = R · I, I = 0) and one will accurately measure the chemical potentials in the
2DEG induced by the source-drain current. The mathematical description of the transport

w
l

Figure 2.5: Schematic depiction of a four probe measurement of the longitudinal and transverse
resistance. The sample is equipped with a source and drain contact, as well as four voltage probes.

through the 2DEG is centered around the conductivity matrix

~σ =
(

σxx σxy

−σxy σxx

)
and ~j = ~σ · ~E =⇒ ~σ

(
Uxx

Uxy

)
=
(
Ix

Iy

)
(2.16)

Here ~j is the current density, which is defined as jx = Ix/w in our 2D case, where w is
the width of the sample. Additionally, we need the resistivity matrix, which follows from
matrix inversion ~ρ = ~σ−1.

~ρ =
(

ρxx ρxy

−ρxy ρxx

)
and ~E = ~ρ ·~j =⇒

(
Uxx

Uxy

)
= ~ρ

(
Ix

Iy

)
(2.17)
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Chapter 2 Quantum transport phenomena

We will first focus on Rxx. A LL, which energetically resides beneath the Fermi energy,
is filled with NL electrons at sufficiently low temperatures. Increasing the magnetic field
entails two effects. On the one hand, the energetic separation ~ωc of two LLs increases
linearly with B. On the other, the degeneracy of a LL NL also increases linearly with B
(eq. 2.6). This leads to a redistribution of electrons among the LLs to always occupy the
energetically most favorable states. For the following discussion we will assume T = 0,
so that the Fermi energy is positioned at the energetically highest occupied state, and a
constant charge carrier concentration.
As shown in figure 2.6, coming from B = 0 T, the DOS transforms from a constant to a

0

D(E)

E    EF B

ħwc
 

Figure 2.6: Development of the DOS of a 2DEG in an increasing magnetic field from left to right.

densely packed Landau level spectrum. Further increasing B will subsequently push the
LLs over EF, as the energetic distance and degeneracy of the LLs simultaneously increase.
Since the charge carrier density is constant, the number of filled states below EF is also
constant. Therefore as B increases, EF will quickly move from an almost empty LL to
the next filled LL, because the DOS on the edges of the LLs is very small compared to
the center. If one now looks at the position of EF dependent on the external magnetic
field (fig. 2.7), it will first follow a straight line, while the energy of the last partially filled
LL increases. Once this LL is empty, EF jumps to the highest occupied state of the next
underlying LL and will move upwards again, until that LL is also depleted. The idealized
behavior of figure 2.7 is only valid for delta shaped LLs. In real samples, the previously
discussed broadening smears out the strongly varying DOS at EF, as the LLs cross EF.
More involved calculations show that this variation entails a strongly varying relaxation
time τtr. In the tails of a LL, screening of the disorder potential is limited. Therefore
scattering is enhanced and mobility is reduced. Actually, the bulk of the sample may even
disaggregate and from a network of interconnected quantum dots. For further reading on
this topic see references [3, 4].
As a rule of thumb we are able to conclude:

small DOS D(EF) −→ small mobility µ
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Section 2.2 Shubnikov-de Haas oscillations

Figure 2.7: Idealized position of the Fermi energy as the magnetic field is swept and different LLs are
populated. [5].

Therefore, whenever a LL is full and EF sits between two LLs, one finds a minimum in
the conductivity σxx. The crux of dealing with a conductivity matrix lies in its inverse,
the resistivity matrix. The longitudinal element reads

ρxx = σxx
σ2

xx + σ2
xy
. (2.18)

Surprisingly, one also finds a minimum for the resistivity.

σxx and ρxx simultaneously acquire minimal values.

Obviously, the resistance Rxx will oscillate as B is swept, giving rise to the designation
Shubnikov-de Haas oscillations (fig. 2.8). Using equation 2.6 yields an expression for the
distance of these oscillations. For the ith minimum it reads:

ns = i ·NL = i · gsgv ·
eB(i)
h
⇒ 1

B(i)
= igsgve

hns
(2.19)

The same is true for the (i+ 1)st minimum:

ns = (i+ 1) ·NL = (i+ 1) · gsgv ·
eB(i+1)
h

⇒ 1
B(i+1)

= (i+ 1)gsgve

hns
(2.20)
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Chapter 2 Quantum transport phenomena

Figure 2.8: Longitudinal resistance Rxx and transverse resistance Rxy of a 2DEG. Shubnikov-de Haas
Oscillations and Hall-plateaus are very pronounced.

Therefore, two consecutive minima obey the expression:

∆

( 1
B

)
= 1
B(i+1)

− 1
B(i)

= gsgv ·
e

hns
(2.21)

In essence, the Shubnikov-de Haas minima are periodic in 1
B . Using 2.21, one is also able

to make a statement about the charge carrier concentration ns:

ns = gsgv ·
e

h

(
1

B(i+1)
− 1
Bi

)−1

(2.22)

A detailed calculation of the longitudinal sample resistance Rxx, for moderate magnetic
fields, under consideration of the Fermi distribution for finite temperatures and a finite
lifetime of the electronic states yields:

Rxx(B)
Rxx(B = 0) ≈ 1 + 2 · cos

(
2π
(
EF
~ωc
− 1

2

))
︸ ︷︷ ︸

a

· exp
(
− πm

∗

τqeB

)
︸ ︷︷ ︸

b

· X

sinhX︸ ︷︷ ︸
c

· cos
(

2π
(
gµBB

2~ωc

))
︸ ︷︷ ︸

d
(2.23)

where
X := 2π2kBT

~ωc

The components a to d have the following meanings.

a) The first term is the analytic representation of the above discussed oscillations in
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Section 2.2 Shubnikov-de Haas oscillations

Rxx with B. The cosine implements the 1
B periodicity of the Shubnikov-de Haas

oscillations.

b) The finite lifetime of the conduction band electrons in the 2DEG, due to scattering
(see section 2.1.2), leads to a partial lifting of the LL degeneracy. This results in a
Lorenzian broadening of the LLs with a full width at half maximum Γ . Like in the
case of thermal broadening, the amplitude of the oscillations in Rxx is dampened,
depending on the ratio of Γ = ~

2τq
and ~ωc.

c) This term takes the thermal broadening of the Fermi distribution into account. The
maxima in the resistance are lowered for higher temperatures, because the central
parts of the LLs with high DOS will be slightly less populated, while EF crosses
the center. The dampening depends on the relation of kBT and ~ωc, since a large
separation of LLs at high B will suppress the excitation of electrons into higher LLs.

d) Since high magnetic fields lead to a lifting of the spin degeneracy, this oscillating
term incorporates the effect of the Zeeman splitting in equation 2.5.
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2.3 Quantum Hall effect

In this section we will briefly review the classical hall effect and then move on to discuss
the model of the Quantum Hall effect (QHE).

2.3.1 Classical Hall effect

The classical Hall effect describes the development of an electric force eEH, normal to
the direction of current. This force compensates the Lorentz force, which deflects charge
carriers to one side of a conductive sample with perpendicularly applied magnetic field.
In a 2D system the expression reads

EHall = UH
w

= −B
n · t︸︷︷︸
ns

·e
· Ix
w

= −BIx
nsew

. (2.24)

Here n is the electron density in units of cm−3, t the sample thickness, w the width of
the sample, B is the value of the magnetic field in z-direction and UH is the Hall voltage
measured normal to the direction of current. The Hall coefficient RH links the voltage
build-up with the current and magnetic field in the form

UH = RHBIx = − BIx
ns · e

. (2.25)

Thus the bare Hall coefficient reads

RH = Rxy
B

= − 1
ns · e

. (2.26)

At this point it is also easy to calculate the Hall resistance, as well as the longitudinal
resistance with the help of equations 1.1 and 1.2

Rxy = UH
Ix

= − B

ns · e
, Rxx = l

w
· m∗

e2nsτtr
[upΩ] . (2.27)

Importantly, in 2D Rxy is identical to the element ρxy of the resistivity matrix (eq. 2.17).
A detailed deduction may be found in reference [6]. Expressions 2.27 describe the clas-
sical Hall effect well for small magnetic fields. Rxx remains constant, whereas Rxy is
proportional to B.
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Section 2.3 Quantum Hall effect

2.3.2 Transition to the QHE

As shown in equation 2.6, the degeneracy of a LL is solely dependent on the magnetic
field. Therefore, whenever ns = i · eBh , i = 1, 2, 3 . . . an integer number of LLs will be
filled. Inserting this into equation 2.27 results in

Rxy = B

e · ns
= B

e
· h

ieB
= h

ie2 . (2.28)

Surprisingly, for fully filled LLs, the hall resistance is always an integer fraction of the
quantity h

e2 , which only contains natural constants. Especially there is no contribution
from the sample geometry. In a real experiment one observes wide plateaus for high
magnetic fields at values Rxy = ρxy = h

ie2 . The center of these plateaus mark complete
filling of the corresponding integer number of LLs. Conversely, this also entails a minimum
in the SdH oscillations, as shown in figure 2.8.

By precisely measuring the sample current Ix and Hall voltage Uxy, it is possible
to measure a resistance, which is independent of the sample geometry and other
external influences. Therefore, this is the method of choice to define the resistance
standard today. RK = ρxy(i = 1) = 25812.8Ω is also know as von Klitzing
constant.

Comment: In our experiment the spin degeneracy is only lifted for high magnetic fields,
thus the quantization initially follows a twofold pattern. Equation 2.28 is modified and
reads:

Rxy = h

2ie2 , i = 1, 2, 3, . . . (2.29)

In order to explain the QHE we will introduce the localization as well as the edge channel
picture. Both focus on different aspects, therefore we will treat them separately.

2.3.3 The localization picture

We have seen in section 2.1.2 that the broadening of the LLs is the result of potential
fluctuations, which determine the electrons’ paths. We now descry two different situations.
Electrons in the center of a LL may diffuse over the whole sample. In the strong disorder
limit, this means they move in between the hills and valleys of the potential. In the
weak disorder limit, electrons outside the center of the LL have screened the potential by
localizing themselves in potential valleys and thus the central electrons delocalize their
wave function over the whole sample. If the LL is almost full, electrons may only locate
themselves in the places where the maximum electron density is not yet reached. This is
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true for the former potential hills. Once a LL is completely filled and there is a uniform
distribution of electrons, the original disorder potential is restored. Which limit applies
is dependent on the potential fluctuations and the LL degeneracy. The more states there
are per LL, the better are the electrons able to screen the potential. Thus it is possible to
move from strong to weak disorder for higher magnetic fields. It should now be clear why
electronic states in the center of a LL are called delocalized and away from the center
localized (fig. 2.9). Figure 2.10 portrays the different situations for the strong disorder

Figure 2.9: Landau levels composed of localized and delocalized states in the localization picture, after
[7].

limit in a locally resolved scanning tunneling microscopy measurement. In the localization

Figure 2.10: Depicted is the local density of states (LDOS) (∝ dI/dV ) for the lowest Landau level at
different energies at B = 12 T. In the sequence from a) to g) one sees the transition from localized
states, which encircle potential valleys (white arrows), to delocalized states and back to localized states,
which encircle potential hills (green arrows). For f) and g) the next LL already occupies the valleys
again. From reference [8].

picture we are able to explain part of the QHE:
As the magnetic field is swept, the Fermi energy moves through the broadened LLs as
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Section 2.3 Quantum Hall effect

depicted in figure 2.9. As long as localized states are at the Fermi energy, there should be
no contribution to conductivity and thus the sample should be highly resistive. Now, as
long as σxy (thus ρxy) remains finite, tensor inversion yields ρxx = 0 (see section 2.2) and we
measure Ux = 0. If the Fermi energy is in a region of delocalized states, conductivity will
be finite and we can thereby explain the oscillating behavior of the longitudinal quantities.
However, there is no reference to the impact of the actual sample geometry or contacts
and there is no explanation for the quantization in the transverse direction.

2.3.4 The edge channel picture

We will now discuss the edge channel picture to explain the questions left behind by the
localization picture.
In general, electrons occupy states in subbands beneath the Fermi energy [9]. Applying an
external electrical field ~E makes a redistribution of electrons towards states with a certain
wave vector ~k favorable. However, a few conditions need to be fulfilled.

1. Far below the Fermi energy all states are occupied, thus no redistribution is possible.
Therefore only the region around the Fermi energy is of interest.

2. In order to find free states at the Fermi energy we need to demand a non-vanishing
DOS there.

Additionally, the electric field will only lead to electrical conductivity, if the available
states are not localized, thus we need to situate the Fermi energy at the center of the LLs.
If we take the edge of the sample into consideration, we need to add a confining potential
to our picture, since electrons can not leave the sample. Thus the energy of an electronic
state is not only governed by its LL index according to Nn = (n+ 1

2)~ωc and the disorder
potential, but a strongly increasing edge potential is also added. Figure 2.11 (a) depicts
the energies of multiple LLs across the sample, while neglecting the potential disorder.
The effect of the edge potential is to lift the energy of the LLs towards the edge, forcing
them to cross the Fermi energy at some finite distance from the edge. Now even if there
are no states in the bulk of the sample, one will find lines of non-vanishing DOS where
the LLs cross the Fermi energy along the edge. Since now our conditions for conductivity
are fulfilled, we can constitute the formation of so called 1D edge channels. Classically
the electrons at the edge of the sample can not perform their cyclotron motion without
being scattered in a fashion that they move along the edge (fig. 2.11 (b)). Opposite edges
will obviously counter propagate on paths called skipping orbits. Introducing defects on
the paths of the electrons only leads to performing an additional full cyclotron orbit and
subsequently resuming the original skipping orbit (fig. 2.11 (c)). Therefore inter-edge
scattering is prohibited.
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edge channels

w

Figure 2.11: (a) Development of the LL energy across a sample with finite width (Neglecting potential
disorder). (b) Skipping orbits along the edge of a sample and (c) their limiting impact on the occurrence
of back scattering by defects. After [10].

In the edge channel picture, the conductance vanishes inside the sample, since
only in the case of EF = (n+ 1

2)~ωc there will be free states for conduction.

Within the sample, the edge channel belonging to the lowest LL sits closest to the edge,
because the corresponding electrons have the most energy to climb against the edge po-
tential. If the Fermi energy crosses another LL, an additional edge channel is created.
Since edge channels are one dimensional conductors, the current through them is

I = e

h

∫ ∞
0

f(E)dE = e

h
µ. (2.30)

The quantity µ is called chemical potential and describes the energy at which the Fermi
distribution f(E) = 1

2 . One may also view it as the average energy a particle needs to
be added to the system. For vanishing temperature µ(T = 0) = EF. In equation 2.30 a
contact with chemical potential µk, which may also be called reservoir, injects a current
of e

hµk for every occupied edge channel. If we now calculate the current for every contact,
we know that in a four point measurement no current flows via the voltage probes, thus
I2 = I3 = I5 = I6 = 0. Contacts 1 (source) and 4 (drain) carry the entire current.
Importantly, in equation 2.30 the chemical potential of the injecting contact enters. In
order to find the net currents, we need to calculate the in- and outflowing currents for
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Section 2.3 Quantum Hall effect

Filling factor i = 3

Figure 2.12: Depiction of a sample in Hall bar geometry. At filling factor i = 3, three counterpropa-
gating edge channels run along opposite sides of the sample. Contacts (1) and (4) are used as source
and drain for the current Ix, whereas contacts (2), (3), (5) and (6) are voltage probes for the transverse
(Rxy) and longitudinal (Rxx) components. From [9].

every contact. The unidirectional and counterpropagating nature of the opposite edge
channels simplifies the argumentation. If i is the number of filled edge channels we find
the following table:

Overview of the contacts
Contact chem. potential current

1 µ1 I = i · eh(µ1 − µ6)
2 µ2 0 = i · eh(µ2 − µ1)
3 µ3 0 = i · eh(µ3 − µ2)
4 µ4 −I = i · eh(µ4 − µ3)
5 µ5 0 = i · eh(µ5 − µ4)
6 µ6 0 = i · eh(µ6 − µ5)

The actually measured voltage difference∆U between two contacts is directly proportional
to their difference in chemical potential, since ∆µ = e ·∆U . This enables us to calculate
the measurable resistances:

Rxy = UH
I

= (µ3 − µ5)/e
I

(4,5)= µ3 − µ5
i(µ3 − µ5)e2/h

= h

ie2 (2.31)

Rxx = Uxx
I

= (µ2 − µ3)/e
I

(3)= 0 (2.32)

The Hall voltage is the result of the differing chemical potentials on either edge: ∆µ =
µ3 − µ5 =(3,2,5)= µ1 − µ4 = eUxy. This also means that in a constant voltage measurement
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the Hall voltage becomes independent of the magnetic field in the QHE regime, as long as
there is no back scattering between edge channels. It is also important to understand, that
in this case the chemical potential on either side of the sample is constant. The change
in the hall resistance mainly originates from the change in the number of conductive edge
channels. In summary we find:

Total current via i edge channels I = i · eh · eUxy

Hall resistance Rxy = h
ie2

conductivity per edge channel δσ = e2

h

Hereby the quantization of the Hall resistance in the edge channel picture is explained.
We conclude:

In the edge channel picture of the QHE, the Hall resistance displays quantized
values Rxy = h

ie2 , while the longitudinal resistance vanishes. This behavior is
caused by conductive stripes along the edge of the sample, one for each filled LL
in the bulk of the sample. Every edge channel adds a conductance of σ = e2

h .

Finally, we look at the strengths and weaknesses of the edge channel picture:

� Geometry and contacts of the sample are included.

� The Hall plateaus with values h
ie2 follow from the 1D model.

� There is no insight concerning the transitions between the plateaus or their width.

� Prime assumption is the absence of back scattering, meaning counter propagating
edge channels can not couple. If it fails, the calculation is vain.

� Localization is also needed, especially to justify the lack of back scattering.
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2.4 Comments on temperature and B field

If we want to witness the Fermi energy crossing the LLs, we have to demand a small
thermal broadening of the Fermi distribution ∆E ≈ kB · T (kB = Boltzmann’s constant)
compared to the energetic distance between neighboring LLs. Thus

~ωc � kB · T ⇒ T � ~ωc
kB

, (2.33)

leading us to the requirement of low temperatures. This is the main reason, besides
the reduction of scattering, to use liquid helium as coolant. Additionally, we can further
improve the above ratio by increasing ωc, thus applying high magnetic fields. This
means:

B large⇒ µB � 1⇔ ωcτ � 1 (2.34)

At high magnetic fields, electrons complete many cyclotron orbits before being scattered.
This improves the visibility of the QHE. Many real measurements are therefore conducted
below the temperature of liquid helium (4.2 K) and at magnetic fields above 10 T. Only
in the high magnetic field regime one finds what is usually noted as the QHE: broad
minima in Rxx with vanishing values, accompanied by broad and flat Hall plateaus in Rxy

(compare fig. 2.8).

2.4.1 Thermal activation of SdH minima

If the Fermi energy is situated between two LLs, then the longitudinal resistance should
ideally vanish. However, the energetic separation of the LLs might be to small, due to
too low magnetic fields, or the temperature is too high and thus a significant number of
delocalized states are populated. Coupling the edge channels will therefore lead to a finite
resistance.
Obviously a higher temperature will provide more electrons with sufficient energy to jump
from the Fermi edge to the next free delocalized state, thus increasing the resistance. Lower
temperatures therefore entail lower resistance values in the SdH minima. This interplay is
schematically illustrated in figure 2.13. Sure enough, the temperature dependence of the
specific conductivity in a SdH minima follows an Arrhenius law [2, p. 308]

σxx = σ0 exp
(
− ∆xx

2kBT

)
, (2.35)

with ∆xx/2 being the relevant activation energy and ∆xx the distance between the two
adjacent LLs. Only half of the energy is required, since an excitation from the Fermi
energy to the next higher unoccupied extended state is sufficient to add to the resistance.
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However, the equivalent process of depopulating the highest occupied extended state, by
excitation to the Fermi energy and leaving a conductive hole behind, also needs to be
taken into account.
Interestingly, in case of an odd filling factor, the activation energy corresponds to the
Zeeman energy g∗µBB and thus allows us to extract the g-factor.

Figure 2.13: Depiction of the thermal activation of electrons sitting at the Fermi energy between two
Landau levels. Previously localized electrons may occupy delocalized states in the center of the next
empty LL and contribute to resistance. Higher temperatures enhance this mechanism and thereby
decrease the visibility of minima in the conductivity.

2.4.2 Systematic errors of the hall resistance

Generally we have assumed, that solely the Hall voltage is picked up by two opposite
contacts on the Hall bar. However, this is not possible to arbitrary precision, since fabri-
cation imposes limits. Therefore, we have to account for an additional longitudinal voltage
contribution (fig. 2.14). Fortunately, there is a way to get rid of this flaw. Measuring the

Contact 1

Contact 2

Figure 2.14: Schematic misalignment of two opposite contacts on a Hall bar. An additional longitudinal
contribution ∆Uxx is picked up besides the Hall voltage Uxy.

Hall voltage for inverted magnetic field will change the sign of Uxy, but will leave Uxx un-
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affected. In conclusion, we end up with values Uxy +∆Uxx and −Uxy +∆Uxx. Obviously
we find the pure Hall voltage by negating one value and subsequent averaging.
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Chapter 3

The Setup

In our actual experimental configuration an InGaAs/InP heterostructure Hall bar sample
has been installed inside a 4 K bath cryostat. It is contacted in four point geometry and
allows the measurement of all elements of the resistivity tensor. The details of the applied
lock-in technique are discussed in appendix 4.2.

3.1 Sample

The InGaAs/InP heterostructure Hall bar is shown in figure 3.1. The picture resolves a
source and drain contact to the left and right, as well as three voltage probes on the top
and bottom. Thereby we are able to inject a current and measure the longitudinal and
transverse resistances independent of contact resistances.

Figure 3.1: Scanning electron microscope picture of the sample and labeled contacts as used.
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3.2 Cryostat

The setup is a custom build Helium bath cryostat. Figure 3.2 shows a schematic drawing
of the components. The cryostat itself has an outer insulation vacuum, which protects the
liquid Nitrogen (LN) shield from heat conductance to the outside. The shield itself is sup-
posed to limit heat conductance and radiation impacting the liquid Helium (LHe). Latter
is separated from the LN by an inner insulation vacuum, which is constantly pumped by
a turbo pump. The sample sits in the center of the superconducting 6 T Titan-Niobium
magnet, which has been fixed to an insert resting within the LHe. The helium bath may be
monitored by pressure valves and is connected to an additional rotary pump. The pump
is used to reduce the base temperature from 4.2 K down to roughly 2.2 K. Limiting the
pumping speed with a valve makes it possible to stabilize the temperature at intermediate
values.
Comment: The magnet may only be used in its superconducting state, since currents up
to 50 A are used. If the magnet switches to the normal resistive state at high currents, a
huge amount of energy is quickly dissipated, possibly damaging the magnet and the cryo-
stat. Avoid quenching the magnet by all means! Therefore it is prohibited to change any
limit values, like maximum voltage, manually on the magnet’s current source. Addition-
ally you will be required to keep track of the helium level inside the cryostat, by marking
it on the outside.

3.3 Software

During the preparations and the cool down of the sample, all relevant values may be read
from the lock-in and the temperature controller. The data of the SdH-oscillations and
QHE are collected with a LabView program. Only the parameters for the magnetic field
and the sweep rate are entered. The readings from the lock-in and magnet’s current source
are automated.
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1 Outer insulation vacuum
2 Liquid Nitrogen
3 

Liquid Helium
5 Magnet

Inner insulation vacuum
4 

6 Sample
7 Safety valves
8 Over pressure gauge
9 Under pressure gauge
10 Ball valve helium bath

11 Pumps for inner vacuum
12 Ball valve helium pump
13 Helium pump
14 Helium recovery system valve

Helium
recovery system 

Figure 3.2: Schematic drawing of the cryostat’s components.
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Experiment and analysis

4.1 Cooling down the cryostat

In the beginning of the cool down process the supervisor must be present. The following
steps need to be taken:

1. Switch on the turbo pump’s controls and the pressure gauge.

2. Switch on the forepump and subsequently the turbo pump to evacuate the inner
insulation vacuum.

3. Go and get liquid Helium (LHe) and Nitrogen (LN).

4. Connect the helium dewar to the recovery system and open the appropriate valves.

5. Transfer of LN with small dewars.

6. Close the valve to the helium recovery system on the LHe dewar. The pressure inside
the LHe dewar should not rise above 200 mbar. In case it does, compensate by
opening the valve again.

7. Slowly insert the helium transfer tube in the dewar until helium gas leaves from the
other end.

8. Insert the transfer tube into the cryostat.

9. Continue lowering the transfer tube into the cryostat and dewar simultaneously, until
it reaches the funnel inside the cryostat. Keep an eye on the pressure!

10. Once the pressure in the dewar is approaching zero, connect the hot-water bag and
keep the pressure around 100 mbar.

11. Once the helium bath is full, reconnect the dewar to the recovery line and blow off
the residual pressure.

12. Extract the helium transfer tube from the cryostat and dewar. (Use cryo-gloves!!)
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4.2 Tasks

The experiment will be conducted in the following way:

1. Cool the sample down to 4.2 K and conduct a measurement of Rxy and Rxx for
magnetic fields in the range of ±6 T. Identify the LLs using equation 2.5. Mobility
and charge carrier concentration may be extracted from equations 2.27 and 2.26.
Estimate the quantities during the experiment and check if they are plausible!

2. Repeat the measurement at 3.2 K and 2.2 K. In order to do so, the ball valve
in the helium bath exhaust line needs to be closed, the helium pump needs to be
switched on and finally the ball valve in the helium pumping line is adjusted to
tune the pumping speed and thus the equilibrium temperature. Especially for 3.2 K
pay attention to the under pressure gauge and use figure 4.1 to estimate a proper
set-point. For 2.2 K full pumping speed is required. The drop in helium pressure
reduces the cooling of the magnet’s current leads. The voltage limit of the current
source will be reached below 6 T, thus the range of the measurement should be
reduced, for instance to ±5.6 T. Important: Never change the temperature at the
maximum magnetic field! Reduced it to at least 3 T!

3. Take notes on the temperature and copy the temperature log file for the day to
estimate the temperature error.

4. You may find the sample dimensions in figure 3.1.

5. Further analysis of the data:

a) Extract ns from the SdH oscillations at different temperatures using equa-
tion 2.22. A FFT analysis is a good way of extracting the relevant frequency in
1
B . Interpolate the data first to have equidistant points. Compare your results
to those generated from the Hall measurements.

b) Use equation 2.23 to find a value for the effective mass of the electrons in
the 2DEG by exploiting the temperature dependence of the SdH oscillation’s
amplitude. Consult supplement 4.2 for details.

c) Use your value of m∗ to calculate τq for different temperatures from the mag-
netic field dependence of the SdH oscillationâ€™s amplitude.

d) Compare the different values of τq and τtr.

e) Exploit the temperature dependence of feasible SdH oscillation’s minima to
extract the electrons’ effective g-factor. Use equation 2.35 and plot it cleverly.

f) Compare your results to those from the literature!
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Figure 4.1: Phase diagram of 4He. [11]
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Lock-in amplifier

The detection of small electrical signals is often times very difficult, since different sources
of noise will influence your signal:

� 50 Hz hum originating from the mains

� 1
f -noise of a pre-amplifier

� Thermal noise of a sensor

� Slow drift of a voltage source.

� Mobile phone radiation

� etc.

All kinds of noise sources, radiating at different frequencies, hinder usual measurement
equipment to quickly find and precisely evaluate the measurement signal. AC-noise as
well as DC-drift undermine the stability and accuracy of an experiment.
Whereas increased integration times help getting rid of AC-noise, at the same time it
makes the measurement more susceptible to DC-drift. Additionally, it might also be ei-
ther impossible or undesirable to wait very long for every data point.
Fortunately, the lock-in technique offers a possibility to get rid of high frequency noise
as well as errors originating from slow voltage drifts, because integration times may be
significantly reduced.

Operation principle of a lock-in amplifier

A lock-in is designed to measure a signal in a very narrow frequency range and suppress
any contribution outside of it.
At first glance, this technique appears very simple. Using a band-pass filter before feeding
the signal to the measurement device seldom yields the desired results. Noise suppression,
speed and accuracy of a good lock-in outperform simple signal filtering techniques by
orders of magnitude.
Lock-ins are able to measure tiny AC-signals, even though they might be obscured by
larger noise components. The key figure is the maximum signal to noise ratio (SNR),
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which a lock-in will tolerate without going astray by more than 5%. It is called dynamic
reserve and usually one will find values of 60 dB or even 100 dB in specialized devices.
Latter corresponds to a huge factor of 105.
In order to perform this well, the lock-in needs to receive a very clean reference signal
with the same frequency as the measurement signal. For measurements, which usually use
DC-signals, one defects to low frequency (f < 100 Hz) AC-signals.
At the core of the lock-in is a measurement technique called phase sensitive detection
(PSD). The input signal is multiplied with a reference signal of known and constant
amplitude, which is phase locked with the (modulated) measurement signal. The result
for two sinusoidal signals reads

Φ(t) = V1 sin (ω1t) · V2 sin (ω2t+ θ) (1)

= 1
2 · V1V2[cos ((ω1 − ω2)t+ θ)− cos ((ω1 + ω2)t+ θ)]. (2)

Here V1 and V2 are the amplitudes of the sinus functions, ω1 and ω2 the corresponding
angular frequencies and θ is the phase difference of the first function relative to the second.
The result is emphasized in figure 2. In case of identical frequency and phase (fig. 2 a)
equation 1 is reduced to

Φ(t) = 1
2V1V2[cos (0)− cos (2ωt)] = 1

2V1V2 −
1
2V1V2 cos (2ωt). (3)

Since the reference signal’s amplitude is constant, one may low-pass filter the result of
the multiplication to get rid of the 2ωt component and find a constant DC-voltage, which
is directly proportional to the measurement signal. Any input component, which has a
differing frequency from the reference signal, does not contribute to the DC-voltage. This
is clear from figure 2 b), since the result for two differing frequencies is symmetric about
zero and thus does not contribute to the Lock-in output after lowpass filtering.
The lowpass filtering may be represented as an integration of the signal over a time T .
The output V , resulting from the signal in equation 1, will be

V = 1
T

∫ T

0
Φ(t)dt (4)

= V1V2
2T

( 1
∆ω

sin(∆ωt+ θ)− 1
Σω

sin(Σωt+ θ)
)
, (5)

where ∆ω represents the difference in angular frequency and Σω the sum. Most notewor-
thy is the 1/∆ω dependence in the first term. All contributions from frequencies different
from the reference will eventually die out with an 1/T dependence. However, for small ∆ω
these contributions are large and long integration is needed to reduce them sufficiently.
This slows down the measurement and thus one looks for quiet regions in the spectral
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Figure 2: a) Mulitplication of two phase locked sinus waves of identical frequency results in a wave
with DC-contribution. b) Multiplying two sinus waves of different frequency yields a wave, which is
symmetric about zero.
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domain to place the reference frequency away from noise.
Looking at a DC-offset of the input signal, one realizes that the multiplication of a constant
with the reference signal will also be symmetric about zero and therefore be eliminated.
A slow drift of the offset will correspond to a very small frequency and will neither yield
a contribution.

Signal phase

Our argumentation has so far only been precisely valid for signals which are in phase with
the reference signal. The output will not match the measurement signal if there is a phase
difference, but will differ by a factor of cos θ. There are two approaches to compensate for
this:

� Adjust the phases to match

� Conduct a two-phase measurement

A two-phase measurement may be carried out by a one-phase lock-in by subsequently
measuring with the original reference signal and then with the 90° shifted signal. The
recorded values may be used to calculate the signal’s amplitude and phase. However, the
signal may not vary between the two measurements.
The better option is to use a two-phase lock-in. It will perform both measurements simul-
taneously with two independent PSD modules. One module uses the original reference
sinus wave and the second uses the corresponding cosine wave. The lowpass filtered signal
from the sinus-PSD is usually called X-output and the one from the cosine-PSD Y-output.
For a measurement signal, which is in phase with the reference signal, the X-output will
be the desired value and the Y-output will be zero. A 90° phase shift of the measure-
ment signal will reverse the situation. One has to keep in mind that any phase shift will
originate from a capacitance or inductance and needs to be discussed in terms of sensible
contributions from distinguishable sources. Especially, if the phase varies during the mea-
surement. By combining both outputs one may always calculate the total measurement
signal:

V =
√

(X2 + Y 2) (6)

Θ = arctan Y

X
(7)
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On our quest to extract the effective mass we use equation 2.23:

Rxx(B)
Rxx(B = 0) ≈ 1 + 2 · cos

(
2π
(
EF
~ωc
− 1

2

))
︸ ︷︷ ︸

a

· exp
(
− πm

∗

τqeB

)
︸ ︷︷ ︸

b

· X

sinhX︸ ︷︷ ︸
c

· cos
(

2π
(
gµBB

2~ωc

))
︸ ︷︷ ︸

d
(8)

with
X := 2π2kBT

~ωc
.

The meanings of the different terms are explained in section 2.2. The 1
B periodic oscilla-

tions in the longitudinal resistance Rxx are solely described by the first cosine term (a).
Its value lies within the boundaries −1 and +1. Therefore the upper and lower envelope
of the measured curves correspond to the extremal values (a) = ±1 and need to follow
equations

R+
xx(B)

Rxx(B = 0) ≈ 1 + 2 · (+1) · exp
(
− πm

∗

τqeB

)
· X

sinhX · cos
(

2π
(
gµBB

2~ωc

))
(9)

and

R+
xx(B)

Rxx(B = 0) ≈ 1 + 2 · (−1) · exp
(
− πm

∗

τqeB

)
· X

sinhX · cos
(

2π
(
gµBB

2~ωc

))
(10)

for the upper and lower envelope respectively. Subtracting both equations from one an-
other yields

∆R±xx(B)
Rxx(B = 0) = R+

xx(B)−R−xx(B)
Rxx(B = 0) ≈ 4 · exp

(
− πm

∗

τqeB

)
· X

sinhX · cos
(

2π
(
gµBB

2~ωc

))
. (11)

The only term depending on temperature is X. Thus, dividing this equation for two
different temperatures leaves a rather simple expression:

∆R±xx(B, T1)
∆R±xx(B, T2)

≈ X(T1) · sinhX(T2)
sinhX(T1) ·X(T2) (12)
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Further simplification gives us our final expression:

∆R±xx(B, T1)
∆R±xx(B, T2)

≈ T1 · sinhX(T2)
T2 · sinhX(T1) . (13)

If we now determine the difference of the envelopes at fixed magnetic field, but varying
temperature, than the solution of the equation will give us a value for m∗. Since there
is no analytical solution to the equation, one has to either find it numerically (Matlab,
Maple,...) or graphically.
Commment: If the numerical route is to be taken, one should consider directly extracting
the factor x = m∗

me
, because one might encounter problems due to too high exponents during

the iterations otherwise.

In order to determine the quantum relaxation time, one uses the extracted value for m∗

and the rewritten equation 11, now reading

ln (A ·∆R±xx(T,B)) = −πm
∗

eτq
· 1
B
. (14)

If one now plots the logarithm over 1
B , one may extract a value for the quantum relaxation

time from the slope.
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