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1 NMR - an overview

The beginnings of nuclear magnetic resonance spectroscopy (NMR) in the field of solid state physics
go back to Edward Purcell and Felix Bloch in 1946. By placing samples, essentially consisting of
nuclei with a magnetic moment, in a homogeneous, static magnetic field, they were able to observe
the occurrence of resonances by irradiating and passing through the frequency of an electromagnetic
field perpendicular to it. In most cases, a single coil serves as both the transmitting and receiving
coils. This method of spectrum recording is called CW (Continuous Wave) and allows insights into
the structure of complex binding states.

A further development of this method is the pulsed nuclear magnetic resonance spectroscopy (P-
NMR) discovered by Erwin Hahn in 1950. Here, pulses are used instead of continuous irradiation.
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By appropriate selection of duration and sequences of these pulses, new effects for analysis in the
time domain could be found and specifically exploited, such as the Free Induction Decay (FID) after
one pulse or the so-called Spinecho after two or more pulses. Both phenomena will be discussed in
more detail in the chapter 3. By means of the Fourier transform, the time signal recorded during
P-NMR is converted into a spectrum. The advantage of the P-NMR method is a significantly better
signal-to-noise ratio and a much shorter measurement time compared to the CW method.

Today’s NMR spectrometers are based on the same basic principles and have become indispensable
in modern physics and chemistry laboratories for the characterization of materials and structures. The
NMR technique allows microscopic investigations of nuclei and their surroundings. In addition to its
use in research, the concepts of NMR are also applied as an important medical imaging technique. To
avoid the daunting term “nuclear”, the term magnetic resonance imaging (MRI) is used synonymously.

How does such an image, e.g. of a human tissue structure, come about? For this purpose, it
is exploited that different types of tissue have different relaxation and dephasing times. These are
typical time constants of the nuclear spins after stimulation by an electromagnetic pulse irradiated
from outside, presented in chapter 2.2. If these are measured spatially and transferred into a contrast
image, very high resolution images, e.g. of human internal organs, can be obtained. This is done
without the use of harmful radiation, which is a significant advantage over computed tomography
(CT). Here, sections of the body image taken by means of radiation from different angles are combined
to form a three-dimensional image.

Our experimental setup allows to apply the basic pulse techniques of NMR, to align magnetizations
caused by the magnetic moments of the nuclear spins and to determine relaxation and dephasing times.

The concepts learned in the experiment can also be applied in a similar form to electron systems
(electron spin resonance, or ESR). Especially the controlled alignment, manipulation and detection
and the fundamental understanding of the dephasing and relaxation mechanisms of electron spins is
the subject of current research in the field of quantum and spin electronics in solid-state physics. The
driving forces of spin-based electronics are the quantum computer and the spin transistor.

The manifold applications of NMR techniques go, as indicated, far beyond this practical experi-
ment. For the basics, the book by C. P. Slichter is recommended [1]. It is also worthwhile to have a
look at the websites of research institutions and, in the medical field, at magnetic resonance images.
Furthermore, many small applets can be found to illustrate pulse sequences in NMR.

2 Theoretical background

It is a good idea to treat the rather simple fact of the Zeeman splitting of a nucleus in an external
magnetic field directly in quantum mechanical terms. The formalism in the Dirac notation and the
repetition of some operator properties should not deter or push too much into the foreground at this
point: The goal is to understand how the splitting and also the spin precession can be described and
understood quantum mechanically.

2.1 Spin and magnetic moment

2.1.1 Quantum mechanical description of the spin precession

For this purpose we use the representation of the nuclear spin by the vector operator

Ŝ = (Ŝx,Ŝy,Ŝz) (1)

whose components contain the angular momentum operators for the individual spatial directions x,
y and z. Let the z-direction be defined by an applied, constant magnetic field

B⃗ = B0 · êz (2)

3



The nucleons (protons and neutrons) that make up atomic nuclei are fermions and have half-integer
spin. We now consider nuclei that have a non-zero total spin. In particular, we want to consider a
hydrogen nucleus, i.e., a single proton, with spin 1

2 . For the component Ŝz and the vector operator
Ŝ the following eigenvalue equations hold:

Ŝz |↑⟩ = +
ℏ
2
|↑⟩ , (3)

Ŝz |↓⟩ = − ℏ
2
|↓⟩ , (4)

Ŝ
2 |↑⟩ = s(s+ 1) |↑⟩ = 3

4
ℏ2 |↑⟩ , (5)

Ŝ
2 |↓⟩ = s(s+ 1) |↓⟩ = 3

4
ℏ2 |↓⟩ . (6)

Thus, the nuclear spin represents an ideal 2-level system with the energy states |↑⟩ und |↓⟩. These
eigenstates span a 2D Hilbert space with orthonormal states:

⟨↑|↓⟩ = 0; ⟨↑|↑⟩ = ⟨↓|↓⟩ = 1; (7)

and completeness relation:
|↑⟩ ⟨↑|+ |↓⟩ ⟨↓| = 1̂. (8)

A general spin operator, e.g. Ŝz, thus has the matrix representation

Sz =

(
⟨↑| Ŝz |↑⟩ ⟨↑| Ŝz |↓⟩
⟨↓| Ŝz |↑⟩ ⟨↓| Ŝz |↓⟩

)
=

ℏ
2

(
1 0
0 −1

)
=

ℏ
2
σz . (9)

Here, the Pauli matrix σz was introduced. Correspondingly, using ladder operators

Ŝ± = Ŝx ± iŜy (10)

with

Ŝ+ |↑⟩ = 0 Ŝ− |↑⟩ = ℏ |↓⟩ (11)

Ŝ+ |↓⟩ = ℏ |↑⟩ Ŝ− |↓⟩ = 0 (12)

it can be shown that also Sx and Sy can be represented in the same way using Pauli matrices:

Sx =
ℏ
2

(
0 1
1 0

)
=

ℏ
2
σx

Sy =
ℏ
2

(
0 −i
i 0

)
=

ℏ
2
σy (13)

Sz =
ℏ
2

(
1 0
0 −1

)
=

ℏ
2
σz

or shortly in vector notation:

S⃗ =
ℏ
2
σ⃗ (14)

Assuming that the nucleus is stationary and not subjected to any external potential, a 2D Schrödinger
equation (the so-called Pauli equation) can be formulated, which reduces to the interaction of the
magnetic field with the spin:

iℏ
∂

∂t
|s⟩ = −1

2
gµN σ⃗ · B⃗ |s⟩ = −1

2
gµN σ̂zB0 |s⟩ (15)
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Here, |s⟩ denotes the general spin state which is composed as a superposition of |↑⟩ and |↓⟩ with the
corresponding time-dependent probability amplitudes α+(t) and α−(t).

|s⟩ = α+(t) |↑⟩+ α−(t) |↓⟩ (16)

= a+e−iE↑t/ℏ |↑⟩+ a−e−iE↓t/ℏ |↓⟩ . (17)

This representation (17) inserted into the Pauli equation (15) yields the two energy eigenvalues:

E↑ = −1

2
gµNB0 = −1

2
ℏγB0 (18)

E↓ =
1

2
gµNB0 =

1

2
ℏγB0 (19)

With the nuclear magneton µN = eℏ/2mp and the gyromagnetic ratio

γProton = 2.675 · 108 1

T · s
, (20)

which links the spin to the magnetic moment:

µ⃗ = γS⃗ . (21)

The spin component in the Pauli equation (15) thus causes the degeneracy to be lifted when the
magnetic field is applied (Fig. 1).

E

Figure 1: Lifting of spin degeneracy after switching on an external magnetic field B (Zeeman splitting) with
energy eigenvalues E↑ and E↓.

The spin precession can now be expressed by calculation of the expectation values:

⟨Ŝx⟩ =
h

2
⟨s | σ̂x | s⟩ = a+a−ℏ cos (ωt) (22)

⟨Ŝy⟩ =
h

2
⟨s | σ̂y | s⟩ = a+a−ℏ sin (ωt) (23)

⟨Ŝz⟩ =
h

2
⟨s | σ̂z | s⟩ =

ℏ
2

(
|α+|2 − |α−|2

)
(24)

Thus, the magnetic moment of the spin precesses about the external magnetic field (Fig. 2).

2.1.2 Simple resonance theory

The energy difference between the split levels from Eq. (18) and (19) amounts to

∆E = E↓ − E↑ = ℏγB0. (25)

With the help of photons of the energy

EPhoton = ℏ · ωL
!
= ℏ · γB0 (26)
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Figure 2: Classical representation of the precession of a magnetic moment µ about the static magnetic field
in the z-direction.

a spin flip can be achieved. Here ωL is the so-called Larmor frequency with which the spins precess
around the magnetic field. We have thus shown that these spins can interact with an irradiated field
of frequency ωL. In NMR these frequencies are typically in the MHz frequency range (radio waves).
The Larmor frequency or, equivalently, the magnitude of the splitting of the energy levels is directly
proportional to the strength of the applied magnetic field, as it results directly from Eq. 26:

ωL = γB0 (27)

2.2 Bloch equations

So far, a single spin or a single magnetic moment in the static magnetic field has been considered.
However, we are looking for a macroscopic description of the time evolution of the magnetic moments
of many nuclei. If we sum up the contributions of the single magnetic moments classically (here we
abstain from an otherwise usual normalization to the volume), we obtain the magnetization:

M⃗ =
∑
i

µ⃗i . (28)

Macroscopically, the equations of motion of the individual magnetization components, the Bloch
equations, can then be formulated phenomenologically:

dMx

dt
= γ

(
M⃗ × B⃗

)
x
− Mx

T2
(29)

dMy

dt
= γ

(
M⃗ × B⃗

)
y
− My

T2
(30)

dMz

dt
= γ

(
M⃗ × B⃗

)
z
+

M0 −Mz

T1
(31)

Here M0 = χ0B0 denotes the equilibrium magnetization which is proportional to the magnetic
field B0 via the susceptibility χ0. Obviously, the Bloch equations have a similar structure among
themselves, since the temporal change of the magnetization components is composed in each case
of two characteristic terms: on the one hand the precession of the magnetization around the applied
magnetic field and on the other hand the relaxations with the characteristic times T1 and T2. The
latter times describe how the system moves back to the equilibrium state after a perturbation, e.g. by
an applied pulse. In thermal equilibrium, the transverse magnetizations Mx and My are zero. There
is only one effective magnetization Mz = M0 in the z direction.

The relaxations are caused by the following effects:

• Spin-lattice relaxation of the z component (T1 relaxation time): The spin system interacts with
the phonons of the lattice (absorption, emission, scattering). More generally, T1 describes the
energy relaxation of the system.

6



• Spin-spin relaxation (T2 relaxation time): spins interact with each other, leading to relaxation.

• Diffusion of molecules in liquids.

• Other effects that are negligible at this point.

The spin-spin relaxation is included in T2, but also the diffusion through molecules in liquids (which will
be neglected here). The name spin-spin relaxation for T2 is somewhat misleading, since this includes
not only the relaxation due to the interaction of the spins with each other, but also the interaction
of the spin system with the lattice, i.e. the phonons. Of course, the spin-lattice relaxation can only
occur for the z component of the magnetization, since in the other two components the energy of the
spin states is degenerate. Without an external magnetic field, the equilibrium magnetization is also
zero in z direction (M0 = 0). Furthermore, a distinction between T1 and T2 is no longer meaningful,
since all magnetization directions are energetically equal. In this case, the Bloch equations look the
same in all three components.

The Bloch equations are solved by transforming into a rotating system of reference. Let the
system S′ rotate with the angular velocity ω⃗ with respect to the fixed laboratory system S. Consider
a function F⃗ = Fx′ · êx′ + Fy′ · êy′ + Fz′ · êz′ in the system S′. For the unit vectors:

dêi′

dt
= ω⃗ × êi′ (32)

This gives for the time derivative of the function F⃗ :

dF⃗

dt
=

dFx′

dt
· êx′ + Fx′ · dêx

′

dt
+

dFy′

dt
· êy′ + Fy′ ·

dêy′

dt
+

dFz′

dt
· êz′ + Fz′ ·

dêz′

dt

=
dFx′

dt
· êx′ +

dFy′

dt
· êy′ +

dFz′

dt
· êz′ + ω⃗ × F⃗

=
∂F⃗

∂t
+ ω⃗ × F⃗ (33)

We will use this general relation in the next section.

2.3 Alternating field in the rotating reference system

A single magnetic moment µ⃗ precesses about an applied magnetic field B⃗:

dµ⃗

dt
= µ⃗× γB⃗ (34)

According to Eq. 33, the equation of motion for µ⃗ in a frame of reference rotating with the same
frequency as the precession ω is:

∂µ⃗

∂t
+ ω⃗ × µ⃗ = µ⃗× γB⃗ (35)

∂µ⃗

∂t
= µ⃗× γ

(
B⃗ +

ω⃗

γ

)
(36)

We thus obtain an effective magnetic field B⃗eff around which the magnetic moments precess:

B⃗eff = B⃗ +
ω⃗

γ
(37)
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Figure 3: Decomposition of the periodic alternating field into right and left circulating fields.

For a periodically changing magnetic field in the x direction of the laboratory system B⃗S =
2B1 · cosωpt · êx, we can perform a decomposition B⃗S = B⃗R + B⃗L into two circular fields in the xy
plane (Fig. 3):

B⃗R = B1 (cos (ωpt) · êx + sin (ωpt) · êy) (38)

B⃗L = B1 (cos (ωpt) · êx − sin (ωpt) · êy) (39)

This field can now be used to induce a spin flip as described in Section 2.1.2. For this, of course, the
frequency ωp must correspond to the Larmor frequency ωL.

A photon is a massless spin 1 particle, so it can take the values mz = ±1. The setting of the spins
corresponds to the polarization direction of the irradiated photons. After the following consideration
of the conservation of angular momentum and energy, this leads to an important conclusion. Because
of the conservation of angular momentum, the sum of the two spins of the nucleus and the photon
must be the same before and after the process. Therefore, we investigate the different combinations
of nuclear and photon spin setting (Tab. 1).

Initial state Final state
nucleus photon nucleus photon
+1

2 +1 +1
2 +1 no interaction

+1
2 -1 −1

2 – photon absorbed
−1

2 +1 −1
2 +1 no interaction

−1
2 -1 +1

2 -1,-1 photon emitted

Table 1: Interaction possibilities when combining different nuclear and photon spin settings.

In the first case, no interaction can take place because the nucleus cannot assume a spin setting
of +3

2 , but also cannot emit a photon because it is already in the lowest-energy state. In the second
case, the photon is absorbed and the nuclear spin flips to the energetically higher state. The third
case allows no absorption of the photon, since it is in the energetically higher state, but also no
emission can take place, since the conservation of momentum would be violated. The fourth case
finally represents the induced emission. The nuclear spin flips and emits, excited by the incident
photon, another photon and thereby goes into the energetically lower state. Thus, only the photons
with the spin −1 can act. Since the polarization of the photons is related to their spin setting as
mentioned above, only one of the two fields obtained in the decomposition is effective. The other
one has no effect on the spin system and therefore will not be considered in the further course.
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Thus, applying this additional alternating field in x direction, we obtain a field acting on the spins:

B⃗ges = B⃗0 + B⃗1 =

 B1 cosωpt
−B1 sinωpt

B0

 (40)

where we denote with B⃗0 the magnitude of the static B⃗ field according to Eq. 2. The magnetic
moments then precess about the total field B⃗ges according to the equation of motion:

dµ⃗

dt
= µ⃗× γ

(
B⃗0 + B⃗1

)
(41)

Let us now switch to a frame of reference rotating with frequency ωz = −ωp about the z axis.
According to Eq. 36, we obtain:

∂µ⃗

∂t
= µ⃗× ((ωz + γB0) êz + γB1êx′) (42)

= µ⃗× γ

((
B0 −

ωp

γ

)
êz +B1êx′

)
= µ⃗× γB⃗eff (43)

with the effective magnetic field

B⃗eff = B1êx′ +

(
B0 −

ωp

γ

)
êz . (44)

In this form of the effective field, the effect of the irradiation with the oscillating field with frequency ωp

can be understood: in z direction the static field is opposed by a partial component of the alternating
field (Fig. 4).

y'

x'

Beff

B0

B1

ω
γ

Figure 4: Effective magnetic field. In the rotating reference frame the static field B0 in z direction is reduced
by the amount ω

γ and disappears completely in case of rotation with the Larmor frequency ωL.

In the resonance case, where the frequency of the irradiated alternating field just corresponds to
the Larmor frequency, i.e. ωp = γB0 = ωL, the alternating field can even completely compensate
the external field in z direction: then only the component in the x′ direction remains in the rotating
system. The magnetic moments then precess about the x′ axis. The following step is decisive: if we
apply the alternating field in x′ direction for a certain time T2π, the magnetization precesses exactly
once around the x′ axis. Accordingly, for a set irradiation time of Tπ/2, the magnetic moments are
rotated from the z direction to the y′ direction, as Fig. 5 shows. We have thus found a way to rotate
the magnetic moments, and thus the magnetization as a macroscopically measurable quantity, into
the xy plane or into the −z direction, for example, and to align them in a specific direction.
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Pulsed-NMR

-Puls 

M

Beff

Figure 5: The magnetization can be selectively rotated by π/2 by irradiating a resonant alternating field pulse
of length Tπ/2, which causes an effective B field in the x′ direction.

What does this movement now look like in the fixed laboratory frame S? While the field B⃗1 is
applied, the magnetic moments precess around the effective magnetic field B⃗eff ; without this field
they rest in the moving reference frame S′. However, S′ rotates in the laboratory system S, so the
magnetic moments precess in the xy plane of S. The magnetization is now again the sum of the
individual magnetic moments. Thus, the magnetization also precesses about the z axis, producing a
magnetic flux. If we now attach a coil in the xy plane of the laboratory system, we can measure a
voltage proportional to the magnetic flux and thus proportional to the magnetization, due to Faraday’s
law. Of course, this is only the case as long as there is a fixed phase relation between the motions of
the individual magnetic moments. However, as we will see later, this is not always the case.

So, in summary, with the help of the additional irradiation of the RF field, we have the possibility
to flip the magnetization out of the thermodynamic equilibrium (z direction) and to measure the
magnetization in the xy plane with the help of the coil. This realizes the so-called P-NMR (Pulsed-
NMR) technique.

3 P-NMR and the generation of FIDs

In the last chapter we saw that with the help of an alternating field the magnetization can be flipped
out of thermal equilibrium in different directions. So what does the pulse look like that we can record
using the coil? We apply a so-called π/2 pulse. This has length Tπ/2 and rotates the magnetization
from the +z direction to the y′ direction. Thus, in the laboratory system, the magnetization precesses
around the z axis. On the oscilloscope, a high narrow pulse (the π/2 pulse) can be seen followed by
an exponentially decreasing peak.

FID

π/2-Puls

t

U

Figure 6: Image of the voltage U induced in the measuring coil after applying a π/2 pulse. An exponential
drop, a so-called Free Induction Signal (FID) signal, can be seen.
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This falling peak is a measure of magnetization and is called “free induction decay” (FID). There
are two reasons for the decrease in magnetization. As we noted above, the x and y components of
the magnetization relax with time T2. Therefore, one should be able to extract the relaxation time
T2 from this signal. However, inhomogeneities of the magnetic field also come into play, so that the
unambiguous determination of T2 is not possible. The inhomogeneities cause the Larmor frequencies
to vary slightly depending on the location within the sample, and therefore some magnetic moments
precess faster and some slower than the rest. This leads to a weakening of the phase relation of the
motions of the individual magnetic moments and therefore to a reduction in magnetization. Depending
on which effect is stronger, the signal is determined by the inhomogeneities in the magnetic field or
the spin-spin relaxation.

4 Determination of the longitudinal and transverse relaxation time

4.1 Spin-lattice relaxation time T1

But how can we still determine the relaxation times from the pulses? To do this, we will first take a
closer look at the determination of T1. The aim is to determine the relaxation of the magnetization
in z direction. First, we apply a π pulse to the sample. Thereby we rotate the magnetization from
the +z direction into the −z direction. On the oscilloscope, of course, only the pulse itself can be
seen, but no FID, since the magnetization is perpendicular to the xy plane and therefore cannot be
recorded with the coil (Fig. 7).

FID

π/2-Pulsπ-Puls

τ Zeit

U

Figure 7: Pulse sequence for determining T1 on the oscilloscope.

Now we let the relaxation run undisturbed for a period of τ and then want to measure the
remaining magnetization. But since we can only do this in the xy plane, we apply a π/2 pulse to
the sample system and then look at the height of the resulting FID. So we apply the pulse sequence
π → τ → π/2, as summarized in Fig. 8.

The behavior of the magnetization in the z direction can be derived relatively easily. From the
Bloch equations it follows under the initial condition that the magnetization in thermal equilibrium is
M0 and the magnetization present at the beginning of the relaxation is M(0):

Mz(t)−M0 = (M(0)−M0) · e
− t

T1 (45)

In our case, M(0) = −M0, since we directly rotate into the −z direction, yielding (Fig. 9):

Mz(t) = M0

(
1− 2 · e−

t
T1

)
(46)

A quick estimation for T1 is obtained via the so-called “zero-crossing-point”. This is the intermediate
situation during the course of relaxation when the total magnetization vanishes. A simple relation
between the time τ0 of the zero crossing and T1 can then be derived from Eq. (46):

T1 =
τ0
ln 2

(47)

To determine the relaxation time T2, one makes use of an interesting spin effect, which we will discuss
below.
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Pulsfolge (Bestimmung von T1 )

-Puls 

-Puls 

M

a) b) c)

d) e)

Figure 8: Evolution of the magnetization during the pulse sequence to determine T1. (a) Initial state: The
net magnetization M⃗ points in the direction of the static magnetic field. (b) By applying a π pulse, the
magnetization can be flipped in the opposite direction. (c) After waiting for a time τ , some spins are relaxed
so that the net magnetization decreases in magnitude. (d) By means of a π

2 pulse, the magnetization can
finally be rotated into the xy plane. (e) In this plane it can now be detected.
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Figure 9: Time dependence of the longitudinal magnetization Mz.

4.2 Spin-spin relaxation time T2

We now want to measure the relaxation in the xy plane by applying a pulse sequence as shown in
Figure 10. We first flip the magnetization into the xy plane with a π/2-pulse. Then we wait a time
τ in which the relaxation can proceed undisturbed. Now the effect due to the inhomogeneities of the
magnetic field occurs, which we discussed above. After the waiting time τ , just a part δM of the
magnetization has shifted by the angle δϕ with respect to the other magnetic moments. Here δϕ is
positive if δM precesses faster than the average and negative if δM is slower than the average. Now
we apply a π pulse to the system. By doing this, we achieve that the δϕ are inverted. After another
time τ , δM has again traveled an angle δϕ, however, by inverting the angles before, we have achieved
that the summation of these two angles now gives 0 and the phase relation of the individual magnetic
moments are restored. Therefore, an echo pulse appears on the oscilloscope as shown in Fig. 11.

By varying τ we can now record a curve from which we can then determine T2. For the relaxation
of the magnetization in xy-direction we get a simple exponential decay from the Bloch equations:

Mxy(t) = Mx,y(0) · e
− t

T2 (48)
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Erzeugung von Spinechos (Bestimmung von T2 )

 -Puls 

a)

-Puls 

b)

d) e)

c)

M

Figure 10: Evolution of the magnetization during the determination of T2. (a) Initial situation: the net
magnetization M⃗ is aligned along the z direction of the static magnetic field. (b) By applying a π

2 pulse, the
magnetization can be rotated into the x′y′ plane. (c) During the time τ , dephasing of the spins takes place.
There are faster and slower preceding parts, and the net magnetization smears. (d) By means of a π pulse, the
spins are now flipped from one side of the x′y′ plane to the other. The immediate consequence is that after
(d), the direction of the precessing parts is inverted. (e) The fanned-out magnetization is thus recombined,
and a spin echo can be observed after time 2τ .

FID

π/2-Puls π-Puls

Spinecho

τ
2τ

Zeit

U

Figure 11: Pulse sequence for determination of T2 on the oscilloscope.

In our case, Mx,y(0) is again M0. Graphically, then, the magnetization shows an exponential behavior
(Fig. 12).

4.3 Optimization of the pulse sequence for the determination of T2

4.3.1 The Carr-Purcell pulse sequence

Carr and Purcell developed a pulse sequence which is an extension to the conventional series of
measurements for determining the T2 relaxation time by measuring the spin echo while varying the
delay time τ [2]. The decisive advantage is that the diffusion, which has not been taken into account
so far and which affects the magnetization as follows, is no longer of importance:

M(2τ) = M(0) · e−
2τ
T2 · e−(γ

∂B
∂z )

2 2
3
Dτ3 (49)

Incidentally, it can be seen from this form that with known magnetic field gradients, the diffusion
constant of the sample can also be determined. But what is the new idea in the Carr-Purcell method?
Here, after the initial π/2 pulse at times τ , 3τ , 5τ , ... a π pulse is repeatedly applied. Then, after the
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Figure 12: Transversal magnetization Mxy vs. time.

times 2τ , 4τ , 6τ , ... renewed spin echoes. So a fixed delay time τ is set. The variation of the time
comes from considering the magnetization decrease of the spin echoes at the multiples of τ . The
pulse sequence is shown schematically in Figure 13. For detailed understanding, we now go through
it step by step.
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H1
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x' (b)
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z'

x' (c) t=τ
H1

y'

z'

x' (d)

y'

z'

x' (e) t=2τ
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z'
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z'

x'
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z'

x' (h)
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x'(g) t=3τ
H1

(i) t=4τ

Figure 13: Carr-Purcell method, modified after [2]. Note that the rotating reference frame is shown here. (a)
The sequence is initiated by a π/2 pulse that rotates the magnetization about the x′ axis in the y′ direction.
The change in mean magnetization, shown by the arrow in (b), results from a frequency ωL not perfectly
tuned to ωp. The π pulse after time τ folds the faster-preceding components to the far end of the shaded
region (c), so that they catch up with the slower ones (d) and overlap with them after time 2τ to form a spin
echo (e). In (f), the process starts again on the negative x′ side. This alternating sequence accumulates any
error in the length of the π pulse.

First, the initial magnetization due to the static field is rotated into the plane by irradiation with a
π/2 alternating field pulse whose effective magnetic field (H1 is used here synonymously with B1, true
to the original publication) points in the x′ direction, see Fig. 13(a). During the delay time τ , the net
magnetization vector in the laboratory system will be precessed by the angle θ = τ(γB1−ωp). Let the
RF angular frequency of the alternating field pulse be denoted here by ωp. Due to the inhomogeneities
of B0, the magnetization vectors of different volume elements precess at different rates. This fanning
out behavior is indicated in Fig. 13(b) by the shaded region instead of a well-defined vector. Now
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the first π pulse occurs without phase shift. Transferred to the rotating reference frame, this also
generates an effective magnetic field in the x′ direction. The fanned magnetization ends up in the xy-
plane again at ideal setting of the π-pulse, as shown in Fig. 13(c). Now the net magnetization vector
continues to precess within the next delay time τ (Fig. 13(d)). The inversion of the slow versus the
fast components in the π pulse results in a spin echo just after a time t = 2τ , as explained in section
4.2, since here the components are recombined, see Fig. 13(e). In Fig. 13(f), the process begins
anew: the net magnetization precesses, and the spin components fan out due to the slightly different
B-field strengths in the individual volume elements. Ideal in-plane flipping inverts the situation in Fig.
13(g), so that after another precession waiting time τ , shown in Fig. 13(h), the faster and slower
precessing parts are merged in a spin echo at t = 4τ , see Fig.13(i).

However, the Carr-Purcell pulse sequence has a decisive disadvantage: we cannot set the length
of the π pulses as precisely as would be necessary. Therefore, each time the π pulse is applied, the
deviation from the xy plane becomes successively larger.

4.3.2 The Meiboom-Gill pulse sequence

There are several approaches to avoid the accumulation of the deviation. In the Meiboom-Gill method
[3], named after its inventors, the same pulse sequence is used as in the Carr-Purcell pulse sequence,
where the irradiation of the RF alternating field to generate a π pulse is phase-shifted by 90◦ with
respect to the field used in the original π/2 pulse. In the image of the rotating reference system, this
means that the effective magnetic field points in a different axial direction. Let’s look at the effect in
detail: First, according to Fig. 14(a), we flip the initial magnetization about the y′ axis into the xy
plane (x′ direction), where the precession and the fanning that takes place during the waiting τ , Fig.
14(a), can occur undisturbed. Now the π pulse is applied by the 90◦ phase-shifted alternating field
and thus the magnetization is flipped about another axis (here x′) in the plane, cf. Fig. 14(c), with
the effect that after t = 2τ the spin echo occurs and the system is again in the same state as after
application of the initial π/2 pulse. If the π pulse now does not ideally lead to the plane, the flap on
the next pass does not point in the same direction as in the Carr-Purcell sequence, but cancels the
error by flipping in practically the opposite direction.

y'

z'

x' (a) t=0

M0

H1
y'

z'

x' (b)

y'

z'

x' (c) t=τ
H1

y'

z'

x' (d)

y'

z'

x' (e) t=2τ

Figure 14: Meiboom-Gill method, modified after [3]. Due to the phase shift of the π/2-pulse, the magneti-
zation of the π-pulse in the rotating frame of reference is shifted around the axis in which the magnetization
was folded by the π/2-pulse at the beginning. An error in the length of the π-pulses does not accumulate but
is cancelled after every second pulse.
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5 Setup

Two almost identical NMR spectrometers are available in the lab course. The constant magnetic
field B⃗0 is generated by means of a permanent magnet. This magnet is relatively sensitive due to
the materials used (rare earths). Therefore, it should be handled with appropriate care. Furthermore,
care must be taken that no objects enter the sample chamber, as these would impair the homogeneity
of the magnet. In the first setup, the alternating field is applied via two Helmholtz coils which act
perpendicular to the field of the permanent magnet. The magnetization is picked up by a solenoid
coil wound around the specimen holder, see Fig. 15. In the second experimental setup, the solenoid
coil is used as both a transmitting and receiving coil. The Helmholtz coils are omitted here.

Figure 15: Geometry of the two experimental setups: Direction of the constant magnetic field (permanent
magnet, B0), the alternating field (Helmholtz coil pair), and the solenoid coil wound around the sample
chamber as pick-up coil (a) and transmitting and receiving coil (b), respectively.

The individual modules of the spectrometer and their interconnection are shown schematically in
Fig. 16.

Figure 16: Layout diagram of the individual elements of the NMR spectrometer.

• The amplifier (Fig. 17) is connected directly to the receiving coil and has two outputs. One
outputs a signal proportional to the amplitude of the AC voltage generated in the receiving coil
by the precession of the magnetization. The second outputs a signal produced by multiplying
the coil signal by that of the frequency generator. This can be used to match the frequency
of the radiated signal with the Larmor frequency. Furthermore, it has another function called
blanking. This is where the amplifier is switched to zero while the RF pulses are applied. In
certain situations this can increase the clarity of the pulses on the oscilloscope, especially when
longer pulse trains are present as in the Carr-Purcell or Meiboom-Gill method.

16



Figure 17: The amplifier units of the NMR spectrometers 1 and 2.

• The pulse generator (Fig. 18) is used to control the individual RF pulses. Via “A-width”
and “B-width” the pulse durations can be set. Thus the π and π/2 pulses etc. can be set.
Furthermore, the “delay time”, or τ , i.e. the delay between the A-pulse and the B-pulse can be
set. A delay of 2τ is built in between two consecutive B pulses to allow time for the spin echo.
The “repetition” time gives the repetition rate of a pulse train, corresponding to the repetition
period P . The setting “number of B-pulses” or N can be used to specify how many B-pulses
should be given to the system after an A-pulse. This is important for the method according to
Carr-Purcell and Meiboom-Gill. The pulses themselves can be turned on by the underlying A
and B switches. The switch “sync” indicates which pulse should be selected as synchronization
for the trigger of the oscilloscope. The output “sync out” should be connected to the trigger
input of the oscilloscope.

Figure 18: The pulse generators. Here the essential settings for the pulse sequences are made: the lengths
of the A and B pulses, the waiting time τ between the pulses, the number of B pulses N and the period P of
the entire pulse sequence.

• The frequency generator (Fig. 19) sends the radio frequency signal to the transmitting coils.
The individual pulses are controlled with the pulse generator. The frequency can be adjusted
via the “frequency adjust” control, with the switch next to it reflecting the fine or coarse setting.
The switch M-G indicates whether or not the RF signal of the A pulse should shift by 90◦ against
that of the B pulse. If this switch is on, then the measurement can be performed according
to the method of Meiboom-Gill. In this slot there is a second device, the mixer. With its help
it is possible to make a Fourier analysis of the obtained signal and adjust the frequency to
the Larmor frequency. Important: The frequency generator must never be operated without
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connection to the transmitting coil (the screwable connection ), otherwise it can be damaged!

Figure 19: The frequency generators. This is where the resonant frequency is set.

• The pulse sequences are displayed on an oscilloscope. Horizontal and vertical cursors can be
used to simplify the reading of pulse heights and lengths. Likewise, the oscilloscope has an
external trigger input that allows synchronization of the oscilloscope image to the start of the
A or B pulse.

6 Experimental procedure and tasks

The relaxation times T1 and T2 of hydrogen nuclei in a mineral oil sample are to be determined with
the presented pulse sequences. In order to perform the measurements, a prior adjustment of the
relevant parameters is necessary.

6.1 Preliminary test conductor loop

In order to estimate the required pulse lengths, it is first necessary to know the strength of the
irradiated alternating field. A conductor loop is attached to each experiment (Fig. 20).

Figure 20: Conductor loop for direct measurement of the RF pulses. It can be fixed in height with the help
of the rubber ring.

This small measuring coil has a cross-sectional area A. With it we can determine the strength of
the RF alternating field. For this purpose, the loop is inserted with the opening in the y direction,
i.e. parallel to the Helmholtz coil pairs or, in the case of the second setup, in the direction of the
transmitting coil. The socket of the coaxial cable is clamped to the connector, which is fitted with
a resistor to negate the effects of the cable, and then connected to an input of the oscilloscope via
another cable. The pulse generator is now used to control the alternating field. For this purpose an
A pulse is applied and the repetition rate or pulse sequence period is chosen sensibly. Of course the
output “sync out” must be connected to the trigger input of the oscilloscope. On the oscilloscope
the alternating field should be visible if the time constant and the y resolution are chosen correctly.
Faraday’s law can then be used to determine the strength of the field:

U = −dΦ

dt
= − d

dt

∫
B⃗s · d⃗f (50)
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where U denotes the voltage induced in the conductor loop, Φ the magnetic flux, and d⃗f a vector
surface element. B⃗s is the linearly polarized alternating field generated by the transmitting coil.
However, only one of the two circularly polarized components is responsible for the manipulation of
the spins (see Sect. 2.3). B⃗s now has the form:

B⃗s = B1 (cosωpt · êx + sinωpt · êy) +B1 (cosωpt · êx − sinωpt · êy) (51)
= 2B1 cosωpt · êx (52)

Here ωp is the angular frequency of the applied field. However, the display of the frequency generator
shows the actual frequency and not the angular frequency, so that the value must still be provided with
the factor 2π. Since the receiver loop (N turns) should be set so that the aperture is perpendicular
to the field, Eq. 50 with Eq. 52 yields

U = 2B1ωp sinωpt ·N ·A = U0 sinωpt (53)

B1 =
U0

2ωpNA
(54)

From this, the time duration of a π/2 pulse is now to be determined. From the theoretical consid-
erations we know that in the time 2π/ω′

L a complete rotation of the magnetic moments around the
x′ axis can be generated. (Note: ω′

L is not to be confused with the precession frequency ωL, around
the static B-field!) So a π/2 pulse takes the time

Tπ/2 =
π

2
· 1

ω′
L

=
π

2ω′
L

. (55)

On the other hand, it is obtained from Eq. 27 that the relation ω′
L = γB1 holds, so in total:

Tπ/2 =
π

2γB1
=

πNAωp

γU0
. (56)

This pulse duration is then set with “A-width” on the pulse generator.

6.2 Settings optimization

So the corresponding pulse should be present, which gives us the maximum FID at the given frequency,
because the magnetization (within the scope of the only approximated resonance frequency) was folded
into the xy plane. Based on this FID, the amplifier setting is now made. To do this, the conductor
loop is removed and the sample tube containing the mineral oil is placed in the sample chamber. The
gain is optimized so that a good signal-to-noise ratio prevails. The time scale and y resolution on the
oscilloscope is chosen accordingly, the repetition time is set to around one second and the tuning, i.e.
the frequency dependent gain is adjusted so that the FID is maximized.

After the basic setting of the amplifier, the so-called sweet spot must be searched for and the
correct resonance frequency must be set. The sweet spot is the point of maximum homogeneity
of the magnetic field. The adjustment of the sweet spot and the resonance frequency must be
done simultaneously, because the resonance frequency depends on the magnetic field. The resonant
frequency can be optimized via the Fourier signal. The Fourier signal can be taken from the second
amplifier output coming from the mixer. This is obtained by multiplying the AC voltage picked up by
the coil (frequency ωL) by the AC voltage irradiated from outside (frequency ωp). According to the
addition theorem, the result is a beating pattern:

2 cosωLt · cosωpt = cos (ωL + ωp)t+ cos (ωL − ωp)t . (57)

Only the low frequency part ∝ cos (ωL − ωp)t appears at the output. The signal visible there should
have no more beatings. If the beats look rather deformed, it may be because the sample is not in the
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sweet spot. In many cases it is sufficient to vary the height of the sample by means of the rubber
ring to the position adjustment in order to find the optimal position. However, the displacements
should not be particularly large. It should be noted that the duration of the various pulses is frequency
dependent and these must be adjusted accordingly by hand. So in order to get the FID at maximum
and to be able to make the adjustment accordingly well, the length of the A-pulse must also be
readjusted.

After an optimal FID has been found, a first estimate for T1 can now be made. For this purpose,
the repetition time is turned down until the FID has about one third of the maximum value. The
decrease in magnetization can be explained by the fact that thermal equilibrium can no longer be
established before the next pulse is applied to the system. The value of the then set repetition time
reflects the magnitude of T1. The repetition time is now chosen to be about 10 to 20 times the value.
Fine tuning is done so that the FID does not change when the repetition time is changed.

6.3 Determination of T1

Now for T1 the above described measurement curve is recorded, i.e. a pulse sequence of π → τ → π
2

is applied. It should be noted that the measured values represent only the magnitude. Thus, the
part of the measurement curve up to the zero crossing of the magnetization must be provided with
a factor −1. The blanking function of the amplifier can be used for the measurement. However,
care should be taken to ensure that a certain residual pulse is still retained, which should not be
confused with the FID. The evaluation must include the determination of T1 from the zero-crossing-
point method, by an exponential fit and by the determination of the slope from a semi-logarithmic
plot. The error calculation must include both, reading inaccuracies and the errors due to statistics.
The values obtained by each method are compared and estimated which is more accurate.

6.4 Determination of T2

To determine T2, a pulse sequence is used as described above, i.e. π
2 → τ → π → τ . The B-pulse is

applied several times and from the two methods (Carr-Purcell or Meiboom-Gill) the one that gives the
better result is chosen. The result of the other method is qualitatively described and reasons are given
why it was not used. On the spectrometer there is a simple switch (marked MG for Meiboom-Gill),
which makes the transition from Carr-Purcell to Meiboom-Gill. The evaluation here is again done by
an exponential fit and by determining the slope from the semi-logarithmic order. The error calculation
again includes the reading inaccuracies and the errors due to the statistics.

7 Questions for self-check

• What are the meanings of the eigenvalues and eigenstates in the ideal 2-level spin system?

• We use NMR frequencies in the MHz range. Why do the electrons present not interfere in these
experiments?

• What do the Bloch equations say, and how can they be solved?

• Why is it enough to measure the voltages induced in the pickup coil, although we are interested
in the magnetizations?

• What is the effect of the pre-measurement with the conductor loop?

• How are the relaxation times T1 and T2 determined experimentally?

• How do the improved pulse sequences for measuring T2 according to Carr-Purcell and Meiboom-
Gill work?
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8 Experiment protocol

Tasks for evaluation

• Determination of B1 and τπ/2 by means of the conductor loop

• Estimation of T1 from the repetition time

• Determination of T1 from the pulse sequence by

– Plot of the magnetization vs. waiting time

– Zero crossing point method

– Exponential fit (determination of U0 necessary)

– Half-logarithmic plot and slope evaluation

• Comparison of Carr-Purcell and Meiboom-Gill for T2

• Determination of T2 from the pulse sequence by

– Plot of the magnetization vs. waiting time

– Exponential fit (determination of U0 necessary

– Half-logarithmic plot and slope evaluation

The protocol must contain:

• Goal of the experiment (1 page max.)

• Operating principle and setup

• Task and conduction of the experiment

• Evaluation (quantitative, including error calculation)

• Discussion (explanation of differences, origin of errors, resulting effects of the evaluation meth-
ods)

• Summary

The required points in the protocol and evaluation can be suitably combined and summarized in the
text. The protocol should not contain:

• repetitive explanations from the text of the test instructions

• superfluous descriptions of the test procedure or information on test conditions which do not
contribute significantly to the measurement result.
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