
Ultrasound Computed Tomography

Simon Humpohl, II. Physikalisches Institut A, RWTH Aachen

January 25, 2023

Contents

1 Introduction 2

2 Physical principles 2
2.1 Sound waves in a medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Generation of ultrasonic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Ultrasonic measurement methods 4
3.1 Ultrasound A-Scan (Reflection measurement) . . . . . . . . . . . . . . . . . . . . . 4
3.2 Ultrasonic measurement in transmission . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Ultrasound B-Scan (2D, reflection) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Ultrasound computer tomography (2D, transmission) . . . . . . . . . . . . . . . . . 5

3.4.1 Determination of the absorption tomogram . . . . . . . . . . . . . . . . . . . 6
3.4.2 The filtered back-projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.3 Filtering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.4 Determination of the velocity tomogram . . . . . . . . . . . . . . . . . . . . 12
3.4.5 Experimental set-up of computed tomography . . . . . . . . . . . . . . . . . 13

4 Info on CT measurement recording 13

5 Tasks 14

6 Further reading 15

1



List of Figures

1 Longitudinal sound wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Transmission measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 B-scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Ultrasound and X-ray CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Tomogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Back-projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8 Filtered image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9 Filter functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Introduction

Ultrasound is a sound wave with a frequency above the limit of human hearing. Unlike electromagnetic
waves, sound waves require a medium to propagate (gases, liquids or solids). Ultrasound is therefore
not separated from normal sound because of different physical properties, but only because humans
cannot hear it. Although this limit varies from person to person, sound frequencies greater than
20 kHz are often referred to as ultrasound. Unlike humans, some animals, such as bats or dolphins,
can perceive sound frequencies of up to 200 kHz and use them for orientation (distance measurement
by determining the time of flight of a reflected sound pulse). In technology, ultrasound is used to
detect objects and measure distances. On the other hand, ultrasound can also be used to manipulate
materials (e.g. ultrasonic milling).

An important technical application is imaging procedures with ultrasound (sonography), which
are used both in materials testing and in medicine as a diagnostic tool. One imag-ing procedure
is the so-called tomography. Tomography (from the ancient Greek “tome”, cut, and “graphein”, to
write), refers to the representation of the internal spatial structures of an object in the form of two-
dimensional sectional images. These sectional images are also called tomograms. A tomogram shows
the inner structure of an object as it would be after cutting out a thin slice. This is referred to as
a non-overlapping representation of the corresponding object layer - in contrast to, for example, the
usual X-ray examination or sonography in reflection, in which all structures that lie behind each other
in the beam path are superimposed. Tomographic methods are particularly important in medical
imaging, but some procedures in the geosciences, physics, palaeontology or material sciences can also
be classified under tomographic methods. As an example of application, the cover picture of this
instruction manual shows an ultrasound tomography of a tree trunk and an actual cut through the
same. Here, ultrasound tomography can be used to investigate e.g. decay or pest infestation on trees
in a non-destructive way. Generally speaking, in tomography integrals of a function are determined
via straight lines and images are calculated from them by means of inverse radon projection.

2 Physical principles

2.1 Sound waves in a medium

If individual particles are periodically moved out of their rest position in an elastic medium, there is
a change in density and pressure that propagates as a continuous elastic wave in the medium due to
the coupling with neighboring particles. This pressure wave is called a sound wave. The location-
and time-dependent speed of the individual particles around their rest position is called velocity. The
propagation speed of the sound wave is called the speed of sound v. It is strongly dependent on the
type of sound-conducting medium, its elastic constants and the mutual position of speed and speed
of sound.
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Figure 1: Illustration of a longitudinal sound wave.

If the velocity S is parallel to the direction of propagation of the wave, we speak of longitudinal
waves. In the case of transverse waves, the velocity and direction of propagation are perpendicular to
each other. Both longitudinal and transverse waves occur in solids, whereas only longitudinal waves
occur in gases and liquids. Only longitudinal sound waves are used in this experiment. The wave
equation is:

d2S

dt2
= v2

d2S

dx2
(1)

The speed of sound v of longitudinal waves is approximately given by

v ≈

√
E

ϱ
(2)

with density ϱ and Young’s moculus of elasticity E. If the velocity and the density of the medium are
known, the so-called wave resistance Z can be calculated:

Z = ϱv ≈
√
ϱE (3)

If a sound wave hits a boundary layer of two media with different characteristic impedances Z, a part
of the sound energy is reflected at the boundary layer. For two media with Z1 and Z2, the following
applies to the transmission:

I2 = I1
4Z1Z2

(Z1 + Z2)2
(4)

This means that the transmitted sound intensity I2 decreases with increasing difference in charac-
teristic impedance. Examples of characteristic impedances of different media are shown in Tab. 1:
Therefore, it is important for an ultrasonic measurement not to have too large transitions in the char-
acteristic impedance of different media in order to avoid excessive reflections. In particular, transitions
to air should be avoided due to the very small characteristic impedance (see Tab. 1). Therefore, the
ultrasonic transducers are either placed directly on the object to be examined or the workpiece is
under water, like the transducers.

The sound intensity can be reduced not only by reflection at boundary surfaces, but also by sound
absorption in the medium. In this case, the absorption coefficient α results from the measured sound
amplitude A and the amplitude without measuring sample A0 according to the attenuation law to (s
is the distance the beam travels in the material):

A = A0e
−αs ⇔ α = −s · ln A

A0
= s · ln A0

A
(5)
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Material ϱ (kg/m3) v (m/s) Z (Ns/m3)
Air 1.25 343 429

Water 998 1484 1.481 · 106
Acryl glass 1180 2750 3.245 · 106
Brass 8553 4430 3.789 · 107

Table 1: Density, longitudinal sound velocity and characteristic impedance of selected materials at room
temperature.

2.2 Generation of ultrasonic waves

The piezoelectric effect is often used to generate ultrasound. Ultrasonic transducers are made of a
piezoelectric material, such as SiO2 (quartz), BaTiO3 and LiNbO3. The material is cut into small,
round plates and coated on both sides with silver or gold electrodes. The mechanical deformation of
a piezoelectric material leads to a change in the relative distances of positive and negative ions within
the atomic lattice, resulting in a voltage drop along a polar axis. Conversely, applying a voltage from
the outside leads to a mechanical deformation of the material, which is called the inverse piezoelectric
effect. An alternating voltage is used to generate a mechanical oscillation of the piezo. Depending on
the crystal orientation and the excitation frequency, the oscillation can be perpendicular or parallel to
the surface of the transducer and thus generate either a longitudinal or a transverse ultrasonic wave.
Thus, on the one hand, the transducers can be used to induce an ultrasonic wave into the sample
and, on the other hand, they can also be used to detect the sound wave. To increase the amplitude
of the mechanical vibration, the excitation frequency is set close to the resonance frequency of the
transducer. The resonant frequency is determined by the thickness and density of the transducer
material. In our experiment, ultrasonic transducers with resonant frequencies of 1MHz, 2MHz and
4 MHz are used, which can be used both as transmitters and receivers and emit longitudinal ultrasonic
waves. To increase the mechanical coupling, an ultrasound gel is placed between the transducer and
the sample surface, which has a wave resistance similar to that of water and thus reduces reflections
at the interface with the sample.

3 Ultrasonic measurement methods

3.1 Ultrasound A-Scan (Reflection measurement)

The A-scan procedure was at the beginning of ultrasound diagnostics. Here, an ultrasound wave
packet (sound pulse) is emitted periodically. With each sound pulse, a time line is written on the
screen (x axis), which can be displayed as the path of the sound pulse if the speed of sound is known.
Between the sound pulses, the echoes reflected from the boundary surfaces are received and displayed
as amplitude peaks (y axis). This method was first used in shipping as an echo sounder in about
1912 and was used for non-destructive material testing in the 1930s. In 1949, it was introduced into
medicine by G. Ludwig (Pennsylvania) and became very important in echoencephalography under
the name “A-scan”, which was still being carried out into the 1980s. In the course of development,
this type of signal processing was replaced by the B-scan procedure due to the lack of anatomical
orientation possibilities.

In the “GSView” software, the A-scan can be started by pressing a correspondingly marked button.
A diagram of the reflected sound amplitude is plotted against the time of flight. It should be noted
that a large intensity is always displayed for times close to zero, as part of the ultrasonic pulse is
reflected back directly from the transducer/sample interface.
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3.2 Ultrasonic measurement in transmission

In this part of the experiment, the speed of sound and the absorption of various materials are to
be measured using a sound pulse measurement in transmission. For this purpose, a transmitter and
a receiver transducer are coupled to the sample (with ultrasound gel). The speed of sound can be
calculated from the temporal distance between the transmitter pulse and the receiver pulse. The
amplitude of the envelopes of the sound pulses provides information about the attenuation value.
Acrylic rods with different lengths are available. This measurement is to be carried out for different
ultrasonic frequencies (1 MHz, 2 MHz, 4 MHz).

Figure 2: Experimental setup for determining the speed of sound and sound absorption using transmission
measurements.

3.3 Ultrasound B-Scan (2D, reflection)

The name B-scan comes from the English “brightness scan” and represents a two-dimensional mapping
of the reflected amplitude values in grey levels. To obtain a B-scan, the ultrasound transducer must
therefore be moved along a line at constant speed, while the reflection signals are recorded as grey
values over the time of flight. Today, so-called array scanners are used for this purpose in medicine,
in which several ultrasound transducers are arranged on a line and are controlled and read out one
after the other. This eliminates the need to constantly move the ultrasound transducer. To perform
a B-scan, the transducer is attached to the stepper motor with the corresponding holder. Make
sure that the transducer is slightly immersed in the water. The measurement object is completely
submerged under the water. Now, with the help of the step-per motor control, the transducer can
be moved over the sample at a constant speed and the reflected signal can be recorded. Here, the
positions of defects in a black test block are to be measured.

Figure 3: Experimental setup for measuring a sample using the B-scan method.

3.4 Ultrasound computer tomography (2D, transmission)

In general, a computer tomography (CT for short) is an imaging measurement procedure for the non-
reactive acquisition of locally distributed measured quantities. The aim is to image a physical quantity
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(in this experiment, e.g. the absorption coefficient or the speed of sound) as a function of location
(x,y) in a cross-sectional plane of the object to be examined in order to gain information about
further properties. The best-known examples are X-ray and ultrasound procedures in medicine. While
most medical ultrasound procedures evaluate the reflected signals (B-scan), X-ray tomography and
ultrasound tomography measure the intensity of the transmitted waves and determine the attenuation
(absorption) from this. In this experiment, in addition to this absorption tomogram, a sound velocity
tomogram is also recorded, which represents the speed of sound at each location (x,y) of the sample.

3.4.1 Determination of the absorption tomogram

In the following, the procedure for creating CT images is first explained on the basis of ultrasound
absorption. If an ultrasound pulse is sent through a cross-section of the body to be examined, the
sound intensity is attenuated, depending on the absorption coefficient. The absorption coefficient is
generally not spatially constant, but a function of the location vector x⃗. For example, ultrasound
tomography in breast diagnosis takes advantage of the fact that breast tissue and tumor tissue absorb
sound to different degrees. For location-dependent absorption coefficients, the damping law

A = A0e
−αs (6)

applies no longer, and is described by the more general Lambert-Beer damping law, whereby the
absorption coefficient can now depend on the location x⃗:

A = A0 exp

(
−
∫ E

S
α(x⃗) ds

)
(7)

The attenuation of the sound intensity on the way from the transmitter S to the receiver E is thus
described by the line integral along the distance s from S to E via the local distribution of the
attenuation coefficient. A transformation results in:

ln

(
A

A0

)
= −

∫ E

S
α(x⃗) ds (8)

where ln
(
A0
A

)
represents a projection P (x,y) of α in the coordinates x,y:

P (x,y) = ln

(
A0

A

)
=

∫ E

S
α(x⃗) ds (9)

The name projection comes from the fact that P (x,y) consists of the projected values of α(x⃗)
integrated in the s-direction. To obtain a good tomographic image, however, a single measurement
is not sufficient. More information is obtained by looking at the projection along many different rays
through the object. To do this, for example, one moves the object to be examined through the
measuring beam and also lets it rotate, as shown in Figure 4.

Each individual measurement is thus defined by the angle of rotation θ, which determines the
direction of the sound beam, and by the lateral coordinate l, the displacement path of the object
under examination (Fig. 5). If one considers all measurements taken at a fixed angle θ, one obtains a
projection P (l,θ). For the sake of completeness, it should be mentioned that in X-ray tomography an
entire field of detectors is exposed to a fanned-out X-ray beam. Here, the transmitter and detector
field rotate around the object to be examined. The quality of the tomography image increases with
the number of projections taken during the rotation.

It now makes sense to convert the coordinates x,y into the known quantities l (travel distance)
and θ (angle of rotation). The following applies to a point s⃗ of the sound beam and l⃗ of the travel
distance:

s⃗ = s

(
sin θ
cos θ

)
; l⃗ = l

(
cos θ
sin θ

)
(10)
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Figure 4: Comparison of ultrasound CT (top) and X-ray CT (bottom). In ultrasound CT, either the object
is moved linearly through the ultrasound beam (as in our experiment) or transmitters or receivers are moved
linearly, or there is a linear field of transmitters and receivers. After this linear scan, the object is rotated and
another scan is per-formed. In X-ray CT, only one transmitter (X-ray tube) and one receiver array are used.
The aperture angle of the X-ray beam is chosen so that the array is completely illuminated. Likewise, after a
scan, the transmitter / receiver is rotated around the object.

For the object point follows:

x⃗ = l⃗ + s⃗ =

(
l · cos θ − s · sin θ
l · sin θ + s · cos θ

)
(11)

and thus for the projection:

P (l,θ) =

∫ E

S
α

(
l · cos θ − s · sin θ
l · sin θ + s · cos θ

)
ds (12)

This conversion is also commonly referred to as the Radon transformation. It is a two-dimensional
integral transformation, since the functions P (l,θ) and α(x,y) each depend on two variables. The
name Radon transformation comes from its inventor, the mathematician Johann Radon, who also
specified the associated inverse transformation in 1917. But it was not until the 1960s that the Radon
transform gained practical significance through the development of X-ray computed tomography.

The measured values P (l,θ) represent a function of the variables l and θ, which emerges from
the function α(x,y) which also depends on two variables. One will therefore expect that P (l,θ) and
α(x,y) contain the same amount of information and that one can calculate the sought distribution
(x,y) from the P (l,θ) known from the measurements. From the above description of the measurement
process, the characteristic features of a tomographic measurement procedure are already expressed:

• The measurement is carried out without interfering with the object being measured, as the
transmitter and receiver are located outside the object. This makes the tomographic methods
non-destructive. The energy of the measuring beam used must of course be low enough not to
damage the object being measured.
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Figure 5: To obtain a complete tomogram, the sound beam is passed through the object (or the object
through the beam) and rotated.

• A single measurement provides an integral average over the quantity of interest in the form of
a line integral.

• In order to obtain the local distribution of the quantity of interest, a very large number of
individual measurements along different rays through the measurement object are necessary.

These three properties concern the measurement data acquisition. The procedure of how to process
the projections P (l,θ) to obtain the distribution α(x⃗) from them is essentially an inversion of the
Radon transform, also called the filtered back-projection.

3.4.2 The filtered back-projection

The filtered back-projection reconstructs an original 2D image from a set of one-dimensional pro-
jections from different directions. For this purpose, the projections are first filtered and then back-
projected over the image surface in the respective direction. The method has the advantage that it
requires little computing power and is therefore very fast.

When processing the measured values to reconstruct α(x⃗), note that only finitely many measured
values P (li,θi) (i = 1...N , j = 1...M) are known. Nevertheless, let us first assume that the projections
P (l,θ) are known for all values of l and θ (0 ≤ θ < π) and only then consider the digital realization.

Since the filtering is carried out with the help of a Fourier filter, the Fourier transformation should
first be briefly discussed again. This is generally defined for a function f(l) by:

F (k) =

∫ +∞

−∞
f(l)e−ikl dl (13)

The Fourier transform F (k) belonging to f(l) is also called spectrum of f(l) and is a function of
the real variable k, which has the dimension 1/m and is called spatial frequency variable. From the
spectrum one arrives at the original function f(l) with the inverse Fourier transform:

f(l) =
1

2π

∫ +∞

−∞
F (k)eikl dk (14)
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Figure 6: Description of the object point x⃗ = (x,y) with the help of the angle of rotation θ, as well as the
distances l (linear traverse) and s (sound beam path).

The Fourier transform of a projection is linked via the projection-slice theorem to a section through
the Fourier transforms of the original function. This can be understood graphically by the fact that
the projection along an axis is equivalent to the Fourier integral with ks = 0, i.e. eikss = 1:

F (P (k,θ)) =

∫ +∞

−∞

∫ E

S
α

(
l · cos θ − s · sin θ
l · sin θ + s · cos θ

)
ds e−ikl dl (15)

=

[∫ +∞

−∞

∫ E

S
α

(
l · cos θ − s · sin θ
l · sin θ + s · cos θ

)
e−i(kl+kss) ds dl

]
ks=0

(16)

= F2α(k,θ) (17)

Here, F (P (k,θ)) stands for the Fourier transform of the projection P (l,θ) belonging to a fixed angle θ,
and F2α(k,θ) for a cut along this angle through the origin of the two-dimensional Fourier transform of
the original function. α can thus be calculated via the inverse Fourier transform in polar coordinates.

α (x⃗) = F−1
2 FP =

1

4π2

∫ 2π

0

(∫ ∞

0
kFP (k,θ)eik(x cos θ+y sin θ) dk

)
dθ (18)

Since FP (k,θ) = FP (−k,θ+π), we can change the integral limits and replace k by |k|. The inverse
Fourier transform in polar coordinates is thus reformulated as a one-dimensional Fourier transform
filtered with a ramp filter (Ram-Lak filter) |k| followed by a back-projection and thus represents the
filtered back-projection for all possible angles θ between 0 and π:

α (x⃗) =
1

2π

∫ π

0

(
1

2π

∫ +∞

−∞
|k|FP (k,θ)eik(x cos θ+y sin θ) dk

)
dθ (19)

For a thorough derivation, please refer to references [1, 2].
Figure 7 again illustrates the facts of projection and back-projection. As an object, we take a

circular screen that is illuminated from the side with a lamp (transmitter). The shadow cast on the
opposite screen (receiver) is a line with a length equal to the diameter of the original disc. The
back-projection (unfiltered in this case) is a smearing of the line back across the entire image plane.
This results in a stripe across the image plane with a width again equal to the diameter of the disc. If
one performs another projection at 90◦ to the first and a corresponding back-projection, one obtains
a square in the center of the image with edge lengths that correspond to the diameter of the original
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Figure 7: Illustration of projection and back-projection: The original object (circular disc top left) is projected
sideways onto a screen using a lamp. The backprojection “smears” the shadow cast back across the image
plane, creating a stripe. The more projections / backprojections from different directions are added, the better
the circular disc is reproduced, but with blurred edges.

object. The more projections and back-projections are carried out at different angles, the better
the original circular disc is reproduced. However, the edge of the disk is not sharply reproduced in
the add-ed/integrated back-projections because the shadows of the projections still overlap out-side
the center. In Fourier space (k-space), this means that high frequencies (k-values), such as those
occurring at sharp edges, are underrepresented in the image. Therefore, Fourier filtering is performed
with a high-pass filter, which is described as a filtered back-projection. As shown above, a ramp filter
(Ram-Lak filter) ensures that sharp object contours are reproduced correctly.

In the following, the individual operations from the above equation are explained again in detail.
First, the following steps are carried out for a fixed angle θ, at which a projection was taken:

1. Fourier transformation of the projection P (l,θ), i.e. calculation of P (k,θ)

FP (k,θ) =
1

2π

∫ +∞

−∞
P (l,θ) e−ikl dl (20)

2. Multiplication of FP (k,θ) with filter function |k|. This high-pass filter is called a Ram-Lak
filter (after the inventors of the filter Ramachandran and Lakshminarayanan) or ramp filter and
is abbreviated FPF:

FPF (k,θ) = |k|FP (k,θ) (21)

3. The integral in the parenthesis is an inverse Fourier transform applied to FP (k,θ) and therefore
yields the original function belonging to FP (k,θ):

PF (l,θ) =
1

2π

∫ +∞

−∞
|k|FP (k,θ)eikl dk (22)

This third step thus consists of an inverse Fourier transformation. The result PF(l,θ) is called
a filtered projection because it emerges from the projection P (l,θ) by filtering with |k|.
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4. Now the substitution of the variables

x⃗ =

(
x
y

)
=

(
l cos θ − s sin θ
l sin θ + s cos θ

)
(23)

carried out in the 3rd step is reversed, i.e. one must now express l with the help of x and y
again. This is done by projecting the location vector onto the l-axis:

l = x⃗ · êl =
(
x
y

)
·
(
cos θ
sin θ

)
= x cos θ + y sin θ (24)

where êl represents the unit vector in l direction. That is, the value of the filtered projection
PF at location l is assigned to all those pixels x⃗ that satisfy the equation l = x cos θ + y sin θ.
In other words, the filtered projection PF(l,θ) is “smeared” along the ultrasonic beam direction
s at constant l. This process corresponds to the inverse of the projection where up-integration
was performed along the same straight line and is therefore referred to as back-projection. Thus
the filtered back-projection is now:

PF(l,θ) = PF ((x cos θ + y sin θ),θ) (25)

5. After these four steps have been carried out for all θ, integration via θ must finally be carried
out. In practice, however, one always has only a finite number of projections available, whereby
the individual angles θi (i = 1,2,...N) are equidistant here: θi =

1
N π. The integration via dθ

can therefore be replaced by a summation with discrete angles of ∆θ = π
N :

α (x⃗) =
1

2π

N∑
i=1

PF ((x cos θi + y sin θi),θi) ·
π

N
(26)

Overall, one can expect good reconstruction results, provided that the number of projections is not
too small. This is the case in medical X-ray tomography with N ≈ 100 projections, each consisting
of ≈ 100 individual measurements. In this practical experiment, the number of measured angles is to
be varied and the connection with the imaging accuracy discussed. Measurement objects for which
the function α(x⃗), does not change too much locally can be measured with fewer projections and the
measurement data can be interpolated.

3.4.3 Filtering problems

Comparing the filtered with the unfiltered back-projection, one can see that the Fourier filtering with
the Ram-Lak filter provides a much better reproduction of the object outlines (see Fig. 8).

Figure 8: Comparison of unfiltered and filtered back-projection (with Ram-Lak filter) to the orig-inal image.
The Ram-Lak filtering clearly reproduces the edges of the objects better [3].

11



A disadvantage of Ram-Lak filtering, however, is the increased imaging of high-frequency noise
(e.g. due to electrical noise of the detectors). A possible improvement is obtained by slightly weakening
the high-pass filtering at higher frequencies. This can be done by multiplying the Ram-Lak filter
F (k) = |k| with another low-pass filter. The software “GSView” displays the unfiltered back-projection
as well as the filtered back-projection with the Ram-Lak filter attenuated towards high frequencies by
an additional Shepp-Logan filter. The mathematical equation of a Shepp-Logan low-pass filter is:

F (k) =
sin πk

2C
πk
2C

(27)

where C is the so-called cut-off parameter and may lie between 0 and 1. C is already fixed in the
display software “GSView” and cannot be changed here. A graphical illustration of the filters is shown
in Figure 9. You can see the Ram-Lak filter (high-pass) necessary for the filtered back-projection, as
well as the Shepp-Logan low-pass filter and the multiplication of both, which results in an attenuation
of the linear increase of the Ram-Lak filter trans-mission at high |k| values.

Figure 9: Graphical representation of the filter functions for the back-projection. The multiplication of
Ram-Lak filter with the Shepp-Logan filter suppresses high-frequency noise of the detectors better.

3.4.4 Determination of the velocity tomogram

For the determination of the sound velocity v at each object point x⃗ one proceeds analogously to the
absorption determination. The measuring apparatus determines the transit time t along the beam
path s of an ultrasonic pulse through the sample:

t =

∫ E

S

1

v (x⃗)
ds (28)

Thus, in this case, the projection is given by:

P (l,θ) = t =

∫ E

S

1

v (x⃗)
ds =

∫ E

S

1

v

((
l cos θ − s sin θ
l sin θ + s cos θ

)) ds (29)

All further steps are carried out as described above to obtain v (x⃗):

1

v (x⃗)
=

1

2π

N∑
i=1

PF ((x cos θi + y sin θi),θi) ·
π

N
(30)
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3.4.5 Experimental set-up of computed tomography

The experimental setup for computed tomography essentially consists of a water basin with connec-
tions for the ultrasound transducers, an aluminum profile frame for the stepper motor mount, as well
as the control units for the ultrasound pulse generation and the stepper motor control (see Fig. 10).
The CT sample is magnetically attached to the sample plate (on the stepper motor) and the sample
is positioned exactly in the middle between the two ultrasound transducers with the help of the step-
per motor control. Then the sample plate is moved by half the scan path (l) so that the sample is
completely outside the sound beam at the edge. This is important so that the time t0 (travel time in
water) can be determined.

Figure 10: Experimental set-up for measuring a sample using ultrasound computed tomography.

After setting the scanning accuracy (distance of the measuring points along l) and the number
of angular intervals, the CT scan is started. During the measurement, the individual line scans
are observed and the formation of the tomograms for v and α is followed by superimposing the
projections of the line scans. Further details on the measurement can be found in the GAMPT
operating instructions.

4 Info on CT measurement recording

The speed of sound is determined by the measured transit time of the ultrasonic pulse. The starting
point is the transmission of the pulse by the transmitter. The transit time is saved when the set
“threshold” value of the amplitude is reached. Care must be taken to find a suitable value for the
threshold. If the threshold value is too small, the speed measurement can already be triggered by
noise in the signal. If it is too large, no speed can be measured at all if the signal attenuation is too
high. It is therefore important to first try out suitable values for the threshold value, the transmitting
power (“output”) and amplification (“gain”). At high gain values, electronic crosstalk of the stepper
motor to the measurement signal can be observed. Since the frequency of the crosstalk is different
from that of the ultrasonic signal, this interference can be eliminated by using the Fourier filter,
thus reducing the threshold value.
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In addition to simple image files of the diagrams, the GS-Echoview software can also save original
data of the individual projections as relative measured values in a file for the amplitude (*_amp.dat),
as well as in one for the speed (*_vel.dat) depending on the angle θ and the travel distance l. The
data is saved in an ascii file. The data is saved in an ascii table if “save results to ascii” has been
activated. For the data output, select “none” for “original data” , otherwise each line scan will
be saved additionally and the measurement will become very slow. The software saves the values for
the sound amplitudes in:

ln
A0

A
= ln

1V

A
(31)

The amplitude is measured by the signal of the receiver piezo in V and here still normalized to
A0 = 1V. For the speed, values of

v0 − v

v
· 100 =

(v0
v

− 1
)
· 100 =

(
t0
t
− 1

)
· 100

are stored. The velocity ratio is given by the running time ratio. For this purpose, the time t0 is
automatically determined outside the sample before each tomography measurement (travel time in
water). Therefore, it must be noted that the travel distance of the sample is chosen so large
that the ultrasonic beam no longer passes through the sample at the beginning of the
measurement.

Under the link1 you will find the file “file_reader.py” which contains functions for reading the files
generated by GS-EchoView in python.

5 Tasks

The experimental procedure should be carried out in the following order. Items shown in green are to
be done at home:

1. A-scan of acrylic glass: Determine the speed of sound and the damping of acrylic glass with
the help of an A-scan in transmission. Use 3 rods of different lengths and different ultrasound
frequencies (1MHz, 2 MHz, 4 MHz). Plot the determined transit times against the path length
and determine the speed of sound in acrylic glass as accurately as possible. Is the speed of
sound dependent on frequency? Discuss possible sources of error. Can you say anything about
the transit times in the ultrasonic sensor itself? Determine the frequency-dependent damping
of the ultrasonic wave.

2. B-scan of the the black acrylic block: Using the scanner, perform a B-scan of the black acrylic
block at an ultrasound frequency of 1MHz, 2MHz and 4 MHz from the top as well as the
bottom side. Create a map with the positions of the disturbances (with error bars) in the
acrylic glass. What can be said about the resolution in the direction of the sound beam at
different frequencies? What can be said about the lateral resolution (perpendicular to the
sound beam). What image artefacts can be seen? Where do these come from?

3. CT-Scan on the CT sample: optimize the parameters for 1 MHz, 2 MHz and 4MHz transducers:

(a) Determine the transit time of the sound pulse through the water basin. Use this in-
formation to set the “interesting time range” for the CT measurement in the measurement
diagram.

(b) Determine the threshold value for starting and stopping the time-of-flight measurement
(important for velocity measurement).

1https://git.rwth-aachen.de/physik_praktikum/ultraschall_versuch/raw/master/file_reader.py?
inline=false
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(c) Optimise the values for output amplitude (“output”) and receiver gain (“gain”) and filter
out disturbances that occur at high gain values by the stepper motor with the help of the
Fourier filter. The values can be different for the absorption CT and the velocity
CT!

(d) Perform CT scans for absorption at 1 MHz, 2 MHz and 4MHz with different numbers of
angles (5◦ or less).

(e) Plot the added (unfiltered) absorption back-projections as well as the speed of sound using
Python (submit code with the script).

(f) Calculate a CT image from the addition of the filtered back-projections (with Ram-Lak fil-
ter) and plot the spatially resolved absorption coefficient using a Python algorithm (submit
code with the script) and the correct scales. What is the difference between CT images
obtained from unfiltered and filtered back-projection? If pack-ages like scikit-image are
used, please indicate where (file and line) in these the relevant steps, i.e. Fourier transform
and filtering are performed.

(g) Plot the absorption CT image for 3 different numbers of back-projections and discuss the
spatial resolution.

(h) Discuss any measurement artefacts or spatial resolution as a function of ultra-sound fre-
quency.

6 Further reading

• M. Seiraffi, A. Trächtler, B. Menz, D. Schupp: Ultraschall-Computertomographie, Universität
Karlsruhe

• Filtered back-projection (Gefilterte Rückprojektion),
https://de.wikipedia.org/wiki/Gefilterte_R%C3%BCckprojektion

• M. Schickert, F. Bonitz, A. Ulanov, B. Müller: Materialcharakterisierung mit Ultraschall- und
Radar-Tomographie – Fäuleerkennung in Holzstämmen, Materialforschungs- und -prüfanstalt
(MFPA), Bauhaus-Universität Weimar

• http://www.ultraschallmuseum.de/download/Tafeln-7-11Korr-Febr2007-Internet.pdf

• http://www.laermorama.ch/m1_akustik/schall_w.html
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